EVALUATION OF CONCRETE COMPRESSIVE STRENGTH USING ARTIFICIAL NEURAL NETWORK AND MULTIPLE LINEAR REGRESSION MODELS
سال انتشار: 1395
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 186
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJOCE-6-3_007
تاریخ نمایه سازی: 5 آذر 1402
چکیده مقاله:
In the present study, two different data-driven models, artificial neural network (ANN) and multiple linear regression (MLR) models, have been developed to predict the ۲۸ days compressive strength of concrete. Seven different parameters namely ۳/۴ mm sand, ۳/۸ mm sand, cement content, gravel, maximums size of aggregate, fineness modulus, and water-cement ratio were considered as input variables. For each set of these input variables, the ۲۸ days compressive strength of concrete were determined. A total number of ۱۴۰ input-target pairs were gathered, divided into ۷۰%, ۱۵%, and ۱۵% for training, validation, and testing steps in artificial neural network model, respectively, and divided into ۸۵% and ۱۵% for training and testing steps in multiple linear regression model, respectively. Comparing the testing steps of both of the models, it can be concluded that the artificial neural network model is more capable in predicting the compressive strength of concrete in compare to multiple linear regression model. In other words, multiple linear regression model is better to be used for preliminary mix design of concrete, and artificial neural network model is recommended in the mix design optimization and in the case of higher accuracy requirements.
کلیدواژه ها:
نویسندگان