A Data-Driven Machine Learning Approach for Turbulent Flow Field Prediction Based on Direct Computational Fluid Dynamics Database

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 124

فایل این مقاله در 15 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JAFM-17-1_004

تاریخ نمایه سازی: 28 آبان 1402

چکیده مقاله:

A novel approach is presented for predicting compressible turbulent flow fields using a neural network-based data-driven method. Accurate prediction in turbulent regions heavily relies on the resolution of available data. Traditional methods, employing image-based techniques by mapping scattered computational fluid dynamics (CFD) data onto Cartesian grids, encounter data scarcity in critical areas such as the boundary layer and wake. Recently, convolutional neural networks (CNN) have gained prominence as the most widely referenced technique in fluid dynamics, utilizing flow field images as datasets for flow field prediction. However, CNN requires datasets with a high pixel density to enhance training accuracy in crucial regions, thereby increasing the input data volume and machine training time. To address this challenge, our proposed method deviates from using flow field images and instead generates datasets directly from the flow field properties of CFD grid points. By employing this approach, several advantages are realized. Firstly, the network benefits from the favorable characteristics of unstructured grids, such as varying point spacing near the object surface and in the far field, which effectively reduces the amount of input data and consequently the machine training cost. Secondly, the construction of the training dataset eliminates the need for interpolation or extrapolation, thereby preserving the accuracy of CFD data. In this case, a simple multilayer perceptron can be trained using the proposed dataset. Various flow field properties, including static pressure, turbulent kinetic energy, and velocity components, can be predicted with high accuracy within a few seconds.

نویسندگان

M. Nemati

Aerospace Engineering Department, Amirkabir University of Technology, Tehran, Iran

A. Jahangirian

Aerospace Engineering Department, Amirkabir University of Technology, Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., ...
  • Bhatnagar, S., Afshar, Y., Pan, S., Duraisamy, K., & Kaushik, ...
  • نمایش کامل مراجع