Comparison of Regression, ARIMA and ANN Models for Reservoir Inflow Forecasting using Snowmelt Equivalent (a Case study of Karaj)

سال انتشار: 1383
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 101

فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JASTMO-7-1_006

تاریخ نمایه سازی: 22 آبان 1402

چکیده مقاله:

The present study aims at applying different methods for predicting spring inflow to the Amir Kabir reservoir in the Karaj river watershed, located to the northwest of Te-hran (Iran). Three different methods, artificial neural network (ANN), ARIMA time se-ries and regression analysis between some hydroclimatological data and inflow, were used to predict the spring inflow. The spring inflow accounts for almost ۶۰ percent of annual inflow to the reservoir. Twenty five years of observed data were used to train or calibrate the models and five years were applied for testing. The performances of models were compared and the ANN model was found to model the flows better. Thus, ANN can be an effective tool for reservoir inflow forecasting in the Amir Kabir reservoir using snowmelt equivalent data.