Energy management of virtual power plant to participate in the electricity market using robust optimization
سال انتشار: 1399
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 109
فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JOAPE-8-1_005
تاریخ نمایه سازی: 13 آبان 1402
چکیده مقاله:
Virtual power plant (VPP) can be studied to investigate how energy is purchased or sold in the presence of electricity market price uncertainty. The VPP uses different intermittent distributed sources such as wind turbine, flexible loads, and locational marginal prices (LMPs) in order to obtain profit. VPP should propose bidding/offering curves to buy/sell from/to day-ahead market. In this paper, robust optimization approach is proposed to achieve the optimal offering and bidding curves which should be submitted to the day-ahead market. This paper uses mixed-integer linear programming (MILP) model under GAMS software based on robust optimization approach to make appropriate decision on uncertainty to get profit which is resistance versus price uncertainty. The offering and bidding curves of VPP are obtained based on derived data from results. The proposed method, due to less computing, is also easy to trace the problem for the VPP operator. Finally, the price curves are obtained in terms of power for each hour, which operator uses the benefits of increasing or decreasing market prices for its plans. Also, results of comparing deterministic and RO cases are presented. Results demonstrate that profit amount in maximum robustness case is reduced ۲۵.۹۱ % and VPP is resisted against day-ahead market price uncertainty.
کلیدواژه ها:
Virtual power plant ، Electricity market uncertainty ، Robust optimization approach ، Bidding and offering curves ، Distributed energy resources
نویسندگان
M. Mohebbi-Gharavanlou
Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran.
S. Nojavan
Department of Electrical Engineering, University of Bonab, Bonab, Iran.
K. Zareh
Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :