Computationally Efficient Long Horizon Model Predictive Direct Current Control of DFIG Wind Turbines
سال انتشار: 1399
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 143
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JOAPE-8-2_008
تاریخ نمایه سازی: 13 آبان 1402
چکیده مقاله:
Model predictive control (MPC) based methods are gaining more and more attention in power converters and electrical drives. Nevertheless, high computational burden of MPC is an obstacle for its application, especially when the prediction horizon increases extends. At the same time, increasing the prediction horizon leads to a superior response. In this paper, a long horizon MPC is proposed to control the power converter employed in the rotor side of DFIG. The main contribution of this paper is to propose a new comparative algorithm to speed up the optimization of the objective function. The proposed algorithm prevents examining all inputs in each prediction step to saving the computational time. Additionally, the proposed method along with the use of an incremental algorithm applies a sequence of weighting factors in the cost function over the prediction horizon to maximize the impact of primary samples on the optimal vector selection. Therefore, the proposed MPC strategy can predict a longer horizon with relatively low computational burden. Finally, results show that the proposed controller has the fastest dynamic response with lower overshoots compared to direct torque control and vector control method. In addition, the proposed strategy with more accurate response reduces the calculation time by up to ۴۸% compared to classical MPC, for the prediction horizon of three.
کلیدواژه ها:
Model predictive control ، Computational effort ، Doubly fed induction generator ، Wind energy conversion system.
نویسندگان
A. Younesi
Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
S. Tohidi
Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
M.R. Feyzi
Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :