A Deep Learning-Based Approach for Comprehensive Rotor Angle Stability ‎Assessment ‎

سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 151

فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JOAPE-10-2_002

تاریخ نمایه سازی: 13 آبان 1402

چکیده مقاله:

Unlike other rotor angle stability assessment methods which only deal with either transient or small-signal (SS) stability, in this paper, a new stability prediction approach has been proposed which considers both transient and SS stability status. Therefore, the proposed method, which utilizes Multi-Layer Perceptron-based deep learning model, can comprehensively predict the post-disturbance rotor angle stability. Since the proposed method uses the voltage of the generating units directly measured by WAMS in the early moments after the disturbance occurrence and does not need to calculate the generators' rotor angle (which requires a high computational burden), it can timely predict the stability stiffness using data provided by PMUs installed at generators' buses. In this respect, this method provides a proper chance for the system operators to take appropriate corrective measures. To evaluate the proposed method's efficiency, it has been implemented and tested on IEEE۱۴-bus and IEEE ۳۹-bus test systems. The dynamic simulation results show that although the proposed method requires fewer PMUs than previous methods that exist in the literature, it can timely evaluate the stability status. Also, to properly show the power system stability stiffness from the transient and SS stability point of view, the suggested method accurately classifies the post-disturbance operating point into Unstable, Alarm, or Normal categories.

نویسندگان

M. Shahriyari

Faculty of Electrical Engineering, Sahand New Town, Tabriz, Iran.‎

H. Khoshkhoo

Faculty of Electrical Engineering, Sahand New Town, Tabriz, Iran.‎

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • J. Machowski et al., “Power system dynamics: stability and control”, ...
  • Y.Isbeih et al., “Generator-based threshold for transient stability assessment”, IET ...
  • D. Huang et al., “Wide-area measurement system-based model-free approach of ...
  • M. Kazeminejad et al., “The effect of high penetration level ...
  • M. Pai, “Energy function analysis for power system stability”, Springer ...
  • G. Hou and V. Vittal, “Determination of transient stability constrained ...
  • S. Madadi, B. Mohammadi-Ivatloo, and S. Tohidi, “Probabilistic Small Signal ...
  • M. Chen et al., “XGBoost-based algorithm interpretation and application on ...
  • S. Mazhari et al., “A hybrid fault cluster and thévenin ...
  • C. Saner et al., “Wide area measurement-based transient stability prediction ...
  • M. Shahriyari et al., “Fast prediction of angle stability using ...
  • R. Zhang et al., “Post-disturbance transient stability assessment of power ...
  • B. Tan et al., “Representational learning approach for power system ...
  • D. Shi, “Study on quick judgement of small signal stability ...
  • S. Azman et al., “A unified online deep learning prediction ...
  • A. Gupta, G. Gurrala, and P. Sastry, “An online power ...
  • Y. Zhou et al., “A novel data-driven approach for transient ...
  • K. Sun et al., “An online dynamic security assessment scheme ...
  • E. Frimpong, P. Okyere, and J. Asumadu, “Prediction of transient ...
  • J. Lavenius and L. Vanfretti, “PMU-based estimation of synchronous machines’ ...
  • M. Gardner and S. Dorling, “Artificial neural networks (the multilayer ...
  • M. Mohammadniaei, F. Namdari, and M. Shahkarami, “A fast voltage ...
  • L. Noriega, “Multilayer perceptron tutorial”, School of Computing. Staffordshire University, ...
  • R. Diao, “Decision tree-based online voltage security assessment using PMU ...
  • H. Khoshkhoo and S. Shahrtash, “Fast online dynamic voltage instability ...
  • F. Gonzalez-Longatt and J. Rueda, “PowerFactory applications for power system ...
  • S. Mendoza-Armenta and I. Dobson, “Applying a formula for generator ...
  • S. Tripathi and S. De, “Assessment of power system stability ...
  • L. Bottou and O. Bousquet, “۱۳ the tradeoffs of large-scale ...
  • V. Kecman, “Learning and soft computing: support vector machines, neural ...
  • Y. Fan, X. Li, and P. Zhang, “Integrated approach for ...
  • نمایش کامل مراجع