GMM Optimization Using Neural Networks for Persian Language Detection

سال انتشار: 1387
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 87

فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_MJEE-2-2_008

تاریخ نمایه سازی: 8 آبان 1402

چکیده مقاله:

Language identification (LID) in speech signals is an important classification task. In this paper Persian language verification is proposed and evaluated. The system is developed by using Gaussian mixture models as a basic system for tokenizing and a Neural Network as the backend processor. Gaussian Mixture Models can be utilized to model the distribution of feature vector in speech signals for classification. We gathered our language identification corpus from different Satellite TV channels. The results are presented for a system using the GMM Tokenizer in combining with Neural Network. The results of GMM-NN system compared with GMM-Tokenizer system. It is shown that using the Neural Network as the backend processor improves the results significantly.

کلیدواژه ها: