An artificial neural network model for predicting the liquidity risk of Iranian private banks

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 128

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJNAA-14-9_008

تاریخ نمایه سازی: 24 مهر 1402

چکیده مقاله:

A highly significant financial risk is liquidity risk. Liquidity risk management is a substantial part of Basel Recommendation no. three; with regard to the importance of this risk, this recommendation directs banks to develop and implement appropriate information systems for measuring, predicting, and controlling liquidity risks. Based on its structure, size, and features, each bank manages liquidity risk using different tools and methods. This study investigated the effectiveness of artificial neural networks in predicting liquidity risk in private Iranian banks. Relying on past studies and employing accounting information, this research developed a specific structure and architecture for a multilayer perceptron neural network; then, it predicted the liquidity risk of Iranian private banks from ۲۰۰۹ to ۲۰۱۹ using neural networks plus Matlab software. The research results revealed that artificial neural networks can be used to predict liquidity risk in private Iranian banks.

نویسندگان

Mahdi Khosroyani

Department of Accounting, Central Tehran Branch, Islamic Azad University, Tehran, Iran.

Farzaneh Heidarpoor

Department of Accounting, Central Tehran Branch, Islamic Azad University, Tehran, Iran.

Ahmad Yaghoob-nazhad

Department of Accounting, Central Tehran Branch, Islamic Azad University, Tehran, Iran.

Zahra Pourzamani

Department of Accounting, Central Tehran Branch, Islamic Azad University, Tehran, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • M. Ansar, Kh. Waleh Zaghard, M. Taqvi and Z. Amirhosseini, ...
  • H.M.K. AlDuhaidahawi, A. Jing, Z.S.M. Sebai and S. Abdullah Harjan, ...
  • M.R. Asghari Oskoui, The use of neural networks in forecasting ...
  • M. Barzandeh and R. Hosseini, Income on risk management and ...
  • Basel Committee on Banking Supervision,’ Basel III: A global regulatory ...
  • Communicating the minimum requirements for liquidity risk management of credit ...
  • R. Che Mamat, A. Ramli, M.B.H. Che Omar, A.M. Samad ...
  • M. Dasineh, Effect of criteria based on accounting of profit ...
  • F. Faramarzi, M. Lashkari and S. Bafande Imandoost, Liquidity risk ...
  • S.M.R. Hashemi, H. Hossanpour, E. Kozegar and T. Tan, Cystoscopy ...
  • S.M.R. Hashemi, H. Hossanpour, E. Kozegar and T. Tan, Cystoscopy ...
  • B. Joel, Risk Management in Banking, New York, John Wiley ...
  • S.M.A. Kafaei and M. Rahzani, Investigating the impact of macroeconomic ...
  • Z. Khoshnoud, T. Akbari Alashti and R. Khansari, Designing a ...
  • M. Khosroyani and F. Heydarpoor, Modeling to predict the liquidity ...
  • A. Komijani and J. Saadatfar, Application of artificial neural network ...
  • M. Lili Dost, Liquidity risk measurement and its relationship with ...
  • J.A. Lopez, What is liquidity Risk?, FRBSF Economic Letter, issue ...
  • L. Matz, Scenario analysis and stress testing, L. Matz, P. ...
  • N. Mishraz, S. Ashok and D. Tandon, Predicting Financial Distress ...
  • B. Ostadi and P. Pezhedani Pajoh, Presenting a model for ...
  • A. Parsaian, A.R. Shirani and M. Ahmadi, Modern Banking in ...
  • R. Raee and A. Saeedi, Fundamentals of Financial Engineering and ...
  • M. Talebi and N. Shirzadi, Credit Risk: Measurement and Management, ...
  • M. Tavana, A. R. Abtahi, Di Caprio and M. Poortarigh, ...
  • G. Teles, J. J.P.C.Rodringues, R.A.L. Rabelo and S.A. Kozlov, Artificial ...
  • A. Thaghafi and V. Saif, Identification and measurement of financial ...
  • M. Valipour, M. Kargosha, Using accounting ratios in predicting systematic ...
  • W. Yan and Y. Song, Intelligent evaluation and early warning ...
  • نمایش کامل مراجع