Convolutional Neural Networks: A Simple and Functional Approach for COVID-۱۹ Severity Prediction
سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 177
فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JIML-10-3_007
تاریخ نمایه سازی: 19 مهر 1402
چکیده مقاله:
Background and Aims: The Coronavirus disease ۲۰۱۹ (COVID-۱۹) pandemic began in ۲۰۲۰. A major problem during COVID-۱۹ was determining the clinical severity. There are a variety of markers for assessing the COVID-۱۹ severity and outcome. So, this study aims to introduce a new approach for determining the disease severity based on the laboratory data obtained by machine learning algorithms.
Materials and Methods: In this study, we used ۱۰۰ patients for modeling. We used demographical, background disease, and laboratory data of COVID-۱۹ patients as parameters for training the convolutional neural network model to evaluate disease severity and tried to create a predictive algorithm for future data. The sequential neural network from the Keras library by TensorFlow was used for prediction. The clinical validation of prediction by model was evaluated by the receiver operating characteristic (ROC) curve.
Results: The mean F۱ score for our current model was ۰.۶۲ (in the range of ۰-۱). The F۱ scores for the severe group and the mild group were ۰.۸ and ۰.۴۵, respectively. The ROC curve for clinical validity revealed an acceptable Area Under Curve (۰.۰۸۵) for both severe and mild categories.
Conclusion: The current study introduces a simple machine learning algorithm as tool for determining COVID-۱۹ severity of by acceptable ROC. This study can lead us to use such algorithms more often in laboratory medicine and clinical decision-making. Furthermore, the present study is just a preliminary study and highlights the need for further research to validate and refine the proposed model.
کلیدواژه ها:
نویسندگان
علی غلامی
Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
پرستو یوسفی
Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
علیرضا طبیب زاده
Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :