An Efficient Algorithm for Stochastic Job Shop Scheduling Problems
محل انتشار: سومین کنفرانس ملی مهندسی صنایع
سال انتشار: 1383
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 2,584
فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
IIEC03_029
تاریخ نمایه سازی: 10 مهر 1385
چکیده مقاله:
This paper presents a non-linear mathematical programming model for a stochastic job shop scheduling problem. Due to the complicity of the proposed model, traditional algorithms have low capability in producing a feasible solution. So in this paper, a hybrid method is proposed to solve the above problem in a reasonable amount of time. This method uses a neural network approach to generate initial feasible solutions and then a
simulated annealing algorithm to improve the quality and performance of the initial solutions in order to produce the optimal/ near optimal solution. We assume that the machine flexibility in processing the operations to decrease the complexity of the proposed model. A number of test problems are randomly generated to verify and validate the proposed hybrid method. The computational results obtained by this method are
compared with lower-bound solutions reported by the Lingo 6. The compared results of these two methods show that the proposed hybrid method is more effective when the problem size increases requiring large parameters.
کلیدواژه ها:
نویسندگان
Tavakkoli-Moghaddam
Dep. of Industrial Eng., Faculty of Eng., University of Tehran, Iran
Jolai
Dep. of Industrial Eng., Faculty of Eng., University of Tehran, Iran
Haji
Dep. of Industrial Engineering, Sharif University of Technology, Tehran, Iran
Vaziri
Dep. of Industrial Eng., Faculty of Eng., University of Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :