Prediction of groundwater level fluctuation using methods based on machine learning and numerical model

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 152

فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_ARWW-10-1_004

تاریخ نمایه سازی: 18 شهریور 1402

چکیده مقاله:

During the recent few decades, the use of various models has been regarded as a promising option to predict groundwater level (GWL) in any given region using a wide variety of data and relevant equations. The lack of trustworthy and comprehensive data is, nevertheless, one of the most significant obstacles that must be overcome in order to analyze and anticipate the depletion of groundwater in the context of water management. Because of this, the implementation of artificial intelligence (AI) models that are able to predict the GWL with high accuracy using a reduced amount of data is unavoidable. In this work, the GWL variations of Lur plain were simulated using GMS model by utilizing the available data and maps. The accuracy of model was assessed at both phases i.e. validation and calibration. Following that, GA-ANN and ICA-ANN approaches, together with ELM, ORELM, and GMDH models, were used in order to fulfill the demand for too smaller volumes by AI procedures. According to the results, the ORELM output had the highest correlation with the observed information, which indicates that it is the most accurate model in this regard. The correlation coefficient for this model was ۰.۹۷۶. Because of this, instead of utilizing a complicated GMS model that needs a significant amount of data for the simulation, an ORELM model can be used to reliably forecast the GWL in the Lur plain. This simple model allows the researchers to accurately predict changes in GWL during rainy and non-rainy years compared to other complicated and time-consuming numerical models.

نویسندگان

Ayoob Moradi

Department of Civil Engineering, Faculty of Engineering, Razi University, Kermanshah, Iran.

Ali Akbar Akhtari

Department of Civil Engineering, Faculty of Engineering, Razi University, Kermanshah, Iran.

Arash Azari

Department of Water Engineering, Faculty of Agricultural Science and Engineering, Razi University, Kermanshah, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Azari A., Zeynoddin M., Ebtehaj I., Sattar A.M.A., Gharabaghi B., ...
  • Bayesteh M., and Azari A., Stochastic optimization of reservoir operation ...
  • Bear J., Modeling groundwater flow and contaminant transport, First Ed., ...
  • Ebtehaj I., Bonakdari H., Shamshirband S., Extreme learning machine assessment ...
  • Ebtehaj I., Bonakdari H., Zeynoddin M., Gharabaghi B., Azari A., ...
  • Erturk A., Ekdal A., Gurel M., Karakaya N., Guzel C., ...
  • Esmaeili F., Shabanlou S., Saadat M.A., Wavelet-outlier robust extreme learning ...
  • Fatemi S. E., and Parvini H., The impact assessments of ...
  • Fleckenstein J.H., Krause S., Hannah D.M., Boano F., Groundwater-surface water ...
  • Graham P.W., Andersen M.S., McCabe M.F., Ajami H., Baker A., ...
  • Guzman S.M., Paz J.O., Tagert M.L.M., Mercer A.E., Evaluation of ...
  • Prediction of SAR and TDS parameters using LSTM- RNN model: A case study on Aran station, Iran [مقاله ژورنالی]
  • Hafezparast M., and Marabi S., Prediction of discharge using artificial ...
  • Huang G.B., Siew C.K., Extreme learning machine: RBF network case, ...
  • Hu L., Xu Z., Huang W., Development of a river-groundwater ...
  • Irawan D., Puradimaja D., Silaen H., Hydrodynamic relationshipbetween manmade lake ...
  • Ivakhnenko A.G., Polynomial theory of complex systems, IEEE Transactions on ...
  • Ivkovic K.M., A top–down approach to characterise aquifer–river interaction processes, ...
  • Klove B., Ala-Aho P., Bertrand G., Gurdak J.J., Kupfersberger H., ...
  • Lachaal F., Mlayah A., Bedir M., Tarhouni J., Leduc Ch., ...
  • Lemieux J., Hassaoui J., Molson J., Therrien R., Therrien P., ...
  • Luo Y., and Sophocleous M., Tow-way coupling of unsaturated-saturated flow ...
  • Malekpour M., and Tabari M., Implementation of supervised intelligence committee ...
  • Moeeni H., Bonakdari H., Fatemi S. E., Zaji A.H., Assessment ...
  • Moeeni H., Bonakdari H., Fatemi S.E., Stochastic model stationarization by ...
  • Nadiri A.A., Naderi K., Khatibi R., Gharekhani M., Modelling groundwater ...
  • Onwubolu G.C. (Ed.)., GMDH-methodology and implementation in MATLAB. Godfrey On ...
  • Pahar G., and Dhar A., A dry zone-wet zone based ...
  • Panda D.K, Mishra A., Kumar A., Quantification of trends in ...
  • Pandey P., and Govind R., Analysis of randomized performance of ...
  • Ramírez-Hernández J., Hinojosa-Huerta O., Peregrina-Llanes M., Calvo-Fonseca A., Carrera-Villa E., ...
  • Rayegani F., and Onwubolu G.C., Fused deposition modelling (FDM) process ...
  • Shrestha S., Bach T.V., Pandey V.P., Climate change impacts on ...
  • Soltani K., Ebtehaj I., Amiri A., Azari A., Gharabaghi B., ...
  • Taylor K.E., Summarizing multiple aspects of model performance in a ...
  • Todd W.R., and Kenneth R.B., Report: Delineation of capture zones ...
  • Xie Y., Cook P.G., Shanafield M., Simmons C.T., Zheng C., ...
  • Yang J., and Zhang Y., Alternating approximation algorithms for l۱-problems ...
  • Yanxun S., Yuan F., Hui Q., Xuedi Zh., Research and ...
  • Zampieri M., Serpetzoglou E., Anagnostou E.N., Nikolopoulos E.I., Papadopoulos A., ...
  • Zeinali M., Azari A., Heidari M.M., Simulating unsaturated zone of ...
  • Zeinali M., Azari A., Heidari M.M., Multiobjective optimization for water ...
  • Zeynoddin M., Bonakdari H., Azari A., Ebtehaj I., Gharabaghi B., ...
  • Zeynoddin M., Bonakdari H., Ebtehaj I., Azari A., Gharabaghi B., ...
  • Zhang K., and Luo M., Outlier-robust extreme learning machine for ...
  • نمایش کامل مراجع