The investigation of accuracy level prediction of Fintech customers loyalty by using data mining algorithm
سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 238
فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJNAA-14-6_020
تاریخ نمایه سازی: 18 شهریور 1402
چکیده مقاله:
The emergence of mobile applications is forcing ambitious companies hoping to build loyalty for customers’ brands to rush towards marketing their brand applications. The present research was conducted with the aim of classifying loyal customers and measuring their loyalty level using data mining algorithms. The present research method is based on applied-descriptive and the statistical population included the customers of Asan Pardakht Company which were considered number ten thousand people and with the number of ۷۰۰,۰۰۰ transactions. These customers were separated by clustering operation and classified for performing different tests. By using the data of Fintech customers of Asan Pardakht Company, it was attempted by using the decision tree algorithm, in addition, to identifying active customers, to implement this algorithm, a way is made in order to increase customer loyalty and ultimately increase their profitability and create satisfaction among managers. In the present research, by implementing the different stages of Crisp methodology, clustering and testing different artificial intelligence algorithms, the most useful algorithm in order to identify the best customers and also to make them loyal and policies and implementable programs to be formulated in order to increase the satisfaction percentage and finally customers’ loyalty was explained and mentioned.
کلیدواژه ها:
نویسندگان
Hammadreza Babakhanian
Department of Information Technology Management, Qeshm Branch, Islamic Azad University, Qeshm, Iran
Seyed Abdollah Amin Mousavi
Department of Management, Central Tehran Branch, Islamic Azad University, Tehran, Iran
Roya Soltani
Department of Industrial Engineering, Faculty of Engineering, Khatam University, Tehran, Iran
Hamidreza Vakilifard
Department of Accounting, Tehran Science and Research Branch, Islamic Azad University, Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :