Evaluation of Neural Networks Performance in Active Cancellation of Acoustic Noise

سال انتشار: 1393
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 214

فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_MJEE-8-4_001

تاریخ نمایه سازی: 13 شهریور 1402

چکیده مقاله:

Active noise control (ANC) works on the principle of destructive interference between the primary disturbance field heard as undesired noise and secondary field which is generated from control actuators. In the simplest system, the disturbance field can be a simple sine wave, and the secondary field is the same sine wave but ۱۸۰ degrees out of phase. This research presents an investigation on the use of different types of neural networks in active noise control. Performance of the multilayer perceptron (MLP), Elman and generalized regression neural networks (GRNN) in active cancellation of acoustic noise signals is investigated and compared in this paper. Acoustic noise signals are selected from a SPIB database. In order to compare the networks appropriately, similar structures and similar training and test samples are deduced for neural networks. The simulation results show that MLP, GRNN, and Elman neural networks present proper performance in active cancellation of acoustic noise. It is concluded that Elman and MLP neural networks have better performance than GRNN in noise attenuation. It is demonstrated that designed ANC system achieve good noise reduction in low frequencies.

کلیدواژه ها:

Generalized Regression Neural Network (GRNN) ، en ، Elman Neural Network ، MLP Neural network ، Active Noise Control (ANC) ، Feedback Active Noise Control System (FANC) ، SPIB Database

نویسندگان

Mehrshad Salmasi

Young Researchers and Elite Club, Najafabad Branch, Islamic Azad University, Najafabad, Isfahan, Iran

Homayoun Mahdavi-Nasab

Department of Electrical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Isfahan, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • S.M., Kuo, D.R., Morgan, “Active noise control: a tutorial review,” ...
  • N.V. George, G., Panda, “Advances in active noise control: A ...
  • S.M., Kuo , D.R., Morgan, “Active noise control systems, algorithms ...
  • C., Hansen, S., Snyder, X., Qiu, L., Brooks and D., ...
  • Y.L., Zhou, Q.Z., Zhang, X.D., Li, and W.S., Gan, “Analysis ...
  • Y., Song, Y., Gong, and S.M., Kuo, “A robust hybrid ...
  • T., Meurers, S., M. Veres, M., Sandor, and S.J., Elliot, ...
  • C.H., Hansen, “Current and future industrial applications of active noise ...
  • D., Oliveira, P.R., Leopoldo, K., Janssens, P., Gajdatsy, H.V., Auweraer, ...
  • Y.L., Zhou, Q.Z., Zhang, X.D., Li, and W.S., Gan, “On ...
  • W.S., Gan, S., Mitra, and S.M., Kuo, “Adaptive feedback active ...
  • C.K., Chen, T.D., Chiueh and J.H., Chen “Active cancellation system ...
  • S., Haykin, “Neural networks-A comprehensive foundation,” Second Edition, Prentice-Hall Incorporation, ...
  • P.D., Wasserman, “Advanced methods in neural computing,” New York: Van ...
  • J.L., Elman, “Finding structure in time,” Cognitive Science, Vol.۱۴, pp. ...
  • Rice University, Signal Processing Information Base [Online], http://spib.rice.edu/spib/select_noise.html ...
  • A.A.. Milani, G.. Kannan, and I.M.S., Panahi, “On maximum achievable ...
  • G., Kannan, A.A., Milani, G., Kannan, I.M.S., Panahi, and N., ...
  • C.K., Chen and T.D., Chiueh, “Multilayer perceptron neural networks for ...
  • نمایش کامل مراجع