QSAR study of antiproliferative drug against A۵۴۹ by GA-MLR and SW-MLR methods

سال انتشار: 1398
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 218

فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_CHRL-2-4_006

تاریخ نمایه سازی: 6 شهریور 1402

چکیده مقاله:

Quantitative structure-activity relationship (QSAR) is the most extensively used computational methodology for analogue-based design. In this research, QSAR model was used to predict antiproliferative properties of ۴-(۲-fluorophenoxy) quinoline derivatives against A۵۴۹(human lung adenocarcinoma). For this purpose, we used the multiple linear regressions (MLR) for the construction of a model to predict drug activity and Stepwise (SW) and genetic algorithm (GA) methods used to build the model. The data were selected from ۳۱ molecules with specific pharmacological activity. They were divided into two sets train and test data. The resulting model was tested using statistical methods such as external test set and cross-validation to ensure its authenticity. The results showed that GA-MLR approach had good predictive power and higher data rates compared with SW-MLR (Q۲LOO = ۰.۸۷۷, R۲Train =۰.۹۳۳). The results obtained in this study can be used to design drugs with higher performance and pharmacological activity to treat lung cancer.

نویسندگان

Somayeh Alimohammadi

Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Aliasghar Hamidi

Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

Parinaz Pargolghasemi

Department of Chemistry, Payame Noor University (PNU), P. O. Box, ۱۹۳۹۵-۳۶۹۷ Tehran, Iran

Nasim Nourani

Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

Mir Saleh Hoseininezhad-Namin

Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • J.B. Vieira, F.S. Braga, C.C. Lobato, C.F. Santos, J.S. Costa, ...
  • M.H. Bohari, H.K. Srivastava, G.N. Sastry, Analogue-based approaches in anti-cancer ...
  • J. Yan, Y. Pang, J. Sheng, Y. Wang, J. Chen, ...
  • G.M. Cragg, P.G. Grothaus, D.J. Newman, Impact of Natural Products ...
  • W. Liao, G. Hu, Z. Guo, D. Sun, L. Zhang, ...
  • T. Fujita, QSAR and drug design, Elsevier, ۱۹۹۵ ...
  • J.C. Madden, M.T. Cronin, Structure-based methods for the prediction of ...
  • E. Pourbasheer, R. Aalizadeh, M.R. Ganjali, P. Norouzi, J. Shadmanesh, ...
  • W. Li, Y. Tang, Y.-L. Zheng, Z.-B. Qiu, Molecular modeling ...
  • A. Habibi-Yangjeh, E. Pourbasheer, M. Danandeh-Jenagharad, Prediction of basicity constants ...
  • A. Habibi-Yangjeh, E. Pourbasheer, M. Danandeh-Jenagharad, Application of principal component-genetic ...
  • R.R. Hocking, A Biometrics invited paper. The analysis and selection ...
  • Q. Shen, Q.-Z. Lü, J.-H. Jiang, G.-L. Shen, R.-Q. Yu, ...
  • E. Pourbasheer, S. Riahi, M.R. Ganjali, P. Norouzi, QSAR study ...
  • V. Vapnik, Statistical learning theory. ۱۹۹۸, in, Wiley, New York, ...
  • H. Khajehsharifi, M. Sadeghi, E. Pourbasheer, Spectrophotometric simultaneous determination of ...
  • P. Gramatica, P. Pilutti, E. Papa, Validated QSAR prediction of ...
  • R. Todeschini, V. Consonni, A. Mauri, M. Pavan, DRAGON-Software for ...
  • R. Leardi, R. Boggia, M. Terrile, Genetic algorithms as a ...
  • I. MathWorks, Genetic Algorithm and Direct Search Toolbox for Use ...
  • P. Pargolghasemi, M.S. Hoseininezhad-Namin, A. Parchehbaf Jadid, Prediction of Activities ...
  • نمایش کامل مراجع