پیش بینی رفتار بازار سهام بر اساس شبکه های عصبی مصنوعی با رویکرد یادگیری جمعی هوشمند
محل انتشار: فصلنامه مدیریت صنعتی، دوره: 10، شماره: 2
سال انتشار: 1397
نوع سند: مقاله ژورنالی
زبان: فارسی
مشاهده: 220
فایل این مقاله در 21 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IMJT-10-2_008
تاریخ نمایه سازی: 5 شهریور 1402
چکیده مقاله:
هدف: پیش بینی دقیق بازار سهام برای معامله گران این بازار ارزشمند است. پیش بینی سری های زمانی مالی از دسته مسائل چالشی و مهم در پیش بینی است و پژوهشگران تلاش می کنند که الگوهای پنهان را برای پیش بینی آینده بازار سهام استخراج کنند. هدف این مقاله ارائه یک مدل هوشمند برای پیش بینی رفتار بازار سهام است. روش: این مقاله، برای افزایش دقت از مدلی بر مبنای الگوریتم های یادگیری جمعی با مدل های پایه شبکه های عصبی استفاده میکند. برای در نظر گرفتن جهت تغییر قیمت در پیش بینی، ساختار دومرحله ای بهکار رفته است. در مرحله نخست، جهت بعدی حرکت قیمت سهام (افزایش یا کاهش) پیش بینی شده و از آن برای پیش بینی قیمت در مرحله دوم استفاده شده است. یافتهها: دقت نتایج و افزایش بازده پیش بینی، مهم ترین چالش مدل های پیشنهادشده در بازار سهام بهشمار میرود. نکته مهم برای سودآوری معاملات، توجه به جهت تغییر قیمت سهام در پیش بینی قیمت آن است که در مدل های پیش بینی به این موضوع توجه کمتری شده است. مدل پیشنهادی با استفاده از روش های مبتنی بر هوش مصنوعی نشان میدهد که پیش بینی رفتار بازار سهام با وجود ماهیت نوسانی و ناپایدار آن، امکانپذیر است. نتیجهگیری: نتایج معیارهای ارزیابی روی داده های واقعی قیمت سهام نشان می دهد مدل پیشنهاد شده در مقایسه با سایر روش ها، با دقت بیشتری می تواند بر نوسانهای بازار غلبه کرده و به عنوان روش قابل اطمینان و عملی در بازارهای سهام بهکار گرفته شود.
کلیدواژه ها:
نویسندگان
محمد تقی فقیهی نژاد
دانشجوی دکتری مهندسی فناوری اطلاعات، دانشکده فنی و مهندسی، دانشگاه قم، قم، ایران.
بهروز مینایی
دانشیار گروه هوش مصنوعی، دانشکده مهندسی کامپیوتر، دانشگاه علم وصنعت ایران،
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :