WEAR RATE PREDICTION OF GRINDING MEDIA USING BPNN AND MLR MODELS IN GRINDING OF SULPHIDE ORES
محل انتشار: مجله علم مواد و مهندسی ایران، دوره: 13، شماره: 2
سال انتشار: 1395
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 271
فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJMSEI-13-2_009
تاریخ نمایه سازی: 26 مرداد 1402
چکیده مقاله:
Nowadays steel balls wear is a major problem in mineral processing industries and forms a significant part of the grinding cost. Different factors are effective on balls wear. It is needed to find models which are capable to estimate wear rate from these factors. In this paper a back propagation neural network (BPNN) and multiple linear regression (MLR) method have been used to predict wear rate of steel balls using some significant parameters including, pH, solid content, throughout of grinding circuit, speed of mill, charge weight of balls and grinding time. The comparison between the predicted wear rates and the measured data resulted in the correlation coefficients (R), ۰.۹۷۷ and ۰.۹۵۵ for training and test data using BPNN model. However, the R values were ۰.۹۳۶ and ۰.۹۶۹ for training and test data by MLR method. In addition, the average absolute percent relative error (AAPE) obtained ۲.۷۹ and ۴.۱۸ for train and test data in BPNN model, respectively. Finally, Analysis of the predictions shows that the BPNN and MLR methods could be used with good engineering accuracy to directly predict the wear rate of steel balls.
کلیدواژه ها:
نویسندگان
A. Azizi
Department of Mining, Petroleum and Geophysics, University of Shahrood
S.Z. Shafaei
School of Mining, College of Engineering, University of Tehran, Tehran, Iran
R. Rooki
Birjand University of Technology
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :