Makespan Minimization using Hybrid Heuristic Metaheuristic Genetic Algorithm

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 126

فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJIEPR-34-2_009

تاریخ نمایه سازی: 24 مرداد 1402

چکیده مقاله:

This paper presents a model for minimizing the makespan in the flow shop scheduling problem. Due to the impact of increased workloads, flow shops are becoming more popular and widely used in industries. To solve the challenge of minimizing makespan, a Hybrid-Heuristic-Metaheuristic-Genetic-Algorithm (HHMGA) is proposed. The proposed HHMGA algorithm is tested using the simulation software and demonstrated with steel industry data. The results are compared with those of the best available flow shop problem algorithms such as Palmer’s slope index, Campbell-Dudek-Smith (CDS), Nawaz-Enscore-Ham (NEH), genetic algorithm (GA) and particle swarm optimization (PSO). According to empirical results and relative differences from the lower bound, the proposed technique outperforms the three heuristics and two metaheuristics algorithms in three of six cases, while the remaining three produce the same results as the NEH heuristic. In comparison to the steel industry's regular job scheduling technique, the simulation model based on HHMGA can save ۴۶۴۲ hours. It was discovered that the suggested model enhanced the job sequence based on the makespan requirements.

نویسندگان

PRASAD BARI

Fr. C. Rodrigues Institute of Technology

PRASAD KARANDE

Veermata Jijabai Technological Institute