License Plate Detection and Recognition based on Neural Networks in Complex Environments
سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 192
فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JRORS-4-4_003
تاریخ نمایه سازی: 2 مرداد 1402
چکیده مقاله:
Now a days due to the rapid advancement of economy around the world the count of vehicles increases day by day. Increase in the number of vehicles causes violation detection, road congestion, accidents at different traffic situations, uneven illumination, lighting and weather conditions. To overcome this issue license plate number is recognized but due to variations in license plate layout, font size of characters, tilted number plates, weather conditions, dirt plate and motion blur license plate recognition becomes difficult. License plate recognition has two main tasks, one is to detect the license plate and the other is to identify the license plate characters. By using region of interest license plate is detected. For recognition first tilted images are corrected using affine transformation and to improve the quality of a low-resolution image super resolution CNN is employed and connected component analysis, horizontal and vertical projection profile area used for separating each individuals characters. Each individual character image is fed to the Convolutional Neural Network (CNN) for character extraction and for classification and the license plate is recognized using convolutional neural networks. The main aim of this paper is to recognize different plate layout with different conditions with minimum data set and less processing time with maximum efficiency.
کلیدواژه ها:
License plate recognition ، Region of interest ، Horizontal and vertical projection ، convolutional neural network
نویسندگان
.N. . Ameena Bibi
M.E.,Ph.D., Assistant Professor(ECE), Government College of Technology, Coimbatore.
Purru Supriya
M.E Applied Electronics, Government College of Technology, Coimbatore.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :