سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

A Hybrid Model for Back-Break Prediction using XGBoost Machine learning and Metaheuristic Algorithms in Chadormalu Iron Mine

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 146

فایل این مقاله در 24 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JMAE-14-2_019

تاریخ نمایه سازی: 27 تیر 1402

چکیده مقاله A Hybrid Model for Back-Break Prediction using XGBoost Machine learning and Metaheuristic Algorithms in Chadormalu Iron Mine

Back-break is one of the adverse effects of blasting, which results in unstable mine walls, high duration, falling machinery, and inappropriate fragmentation. Thus, the economic benefits of the mine are reduced, and safety is severely affected. Back-break can be influenced by various parameters such as rock mass properties, blast geometry, and explosive properties. Therefore, during the blasting process, back-break must be accurately predicted, and other production activities must be done to prevent and reduce its adverse effects. In this regard, a hybrid model of extreme gradient boosting (XGB) is proposed for predicting back-break using gray wolf optimization (GWO) and particle swarm optimization (PSO). Additionally, validation of the hybrid model is conducted using XGBoost, gene expression programming (GEP), random forest (RF), linear multiple regression (LMR), and non-linear multiple regression (NLMR) methods. For this purpose, the data obtained from 90 blasting operations in the Chadormalu iron ore mine are collected by considering the parameters of the blast pattern design. According to the results obtained, the performance and accuracy level of hybrid models including GWO-XGB (R2 = 99, RMSE = 0.01, MAE = 0.001, VAF = 0.99, a-20 = 0.98), and PSO-XGB (99, 0.01, 0.001, 0.99, 0.98) are better than the XGBoost (97, 0.185, 0.132, 0.98, 95), GEP (96, 0.233, 0.186, 0.967, 0.935), RF (97, 0.210, 0.156, 0.97, 0.94), LMR (96, 0.235, 0.181, 0.964, 0.92), and NLMR (96, 0.229, 0.177, 0.968, 0.93) models. Notably, the GWO-XGB hybrid model has superior overall performance as compared to the PSO-XGB model. Based on the sensitivity analysis results, hole depth and stemming are the essential effective parameters for back-break.

کلیدواژه های A Hybrid Model for Back-Break Prediction using XGBoost Machine learning and Metaheuristic Algorithms in Chadormalu Iron Mine:

backbreak ، extreme gradient boosting (XGB) ، Particle swarm optimization (PSO) ، gray wolf optimization (GWO) ، Chadormalu iron mine

نویسندگان مقاله A Hybrid Model for Back-Break Prediction using XGBoost Machine learning and Metaheuristic Algorithms in Chadormalu Iron Mine

Zohreh Nabavi

Department of Mining Engineering, Facullty of Engineering, Tarbiat Modares University, Tehran, Iran

Mohammad Mirzehi

Department of Mining Engineering, Facullty of Engineering, Tarbiat Modares University, Tehran, Iran

Hesam Dehghani

Department of Mining Engineering, Hamedan University of Technology, Hamedan, Iran

Pedram Ashtari

Department of Mining Engineering, Hamedan University of Technology, Hamedan, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
. Jahed Armaghani, D., Tonnizam Mohamad, E., Hajihassani, M., Alavi ...
. Agrawal, H. and Mishra, A.K. (۲۰۱۸). Evaluation of initiating ...
. Dai, Y., Khandelwal, M., Qiu, Y., Zhou, J., Monjezi, ...
. Ramesh Murlidhar, B., Yazdani Bejarbaneh, B., Jahed Armaghani, D., ...
. Sirjani, A.K., Sereshki, F., Ataei, M., and Hosseini, M.A. ...
. Sharma, M., Choudhary, B.S., and Agrawal, H. (۲۰۲۱). Prediction ...
. Gates, W.C., Ortiz, L.T., and Florez, R. M. (۲۰۰۵, ...
. Mohammadnejad, M., Gholami, R., Sereshki, F., and Jamshidi, A. ...
. Sari, M., Ghasemi, E., and Ataei, M. (۲۰۱۴). Stochastic ...
. Esmaeili, M., Osanloo, M., Rashidinejad, F., Aghajani Bazzazi, A., ...
. Konya, C.J. and Walter, E. J. (۱۹۹۱). Rock blasting ...
. Monjezi, M., Amini Khoshalan, H., and Yazdian Varjani, A. ...
. Roy, M.P., Mishra, A.K., Agrawal, H., and Singh, P.K. ...
. Singh, C.P., Agrawal, H.E.M.A.N.T., Mishra, A.K., and Singh, P.K. ...
. Enayatollahi, I. and Aghajani-Bazzazi, A. (۲۰۰۹, September). Evaluation of ...
. Enayatollahi, I. and Aghajani-Bazzazi, A. (۲۰۰۹). Evaluation of salt-ANFO ...
. Faradonbeh, R.S., Armaghani, D.J., Monjezi, M., and Mohamad, E.T. ...
. Lawal, A.I., Kwon, S., Hammed, O.S., and Idris, M.A. ...
. Mahdiyar, A., Jahed Armaghani, D., Koopialipoor, M., Hedayat, A., ...
. Nguyen, H., Bui, X.N., Bui, H.B., and Cuong, D.T. ...
. Zhang, X., Nguyen, H., Bui, X.N., Tran, Q.H., Nguyen, ...
. Chandrahas, N., Choudhary, B.S., Teja, M.V., Venkataramayya, M.S., and ...
. Monjezi, M., Rezaei, M., and Yazdian Varjani, A. (۲۰۱۰). ...
. Monjezi, M., Ahmadi, Z., Varjani, A. Y., and Khandelwal, ...
. Ghasemi, E. (۲۰۱۷). Particle swarm optimization approach for forecasting ...
. Saghatforoush, A., Monjezi, M., Shirani Faradonbeh, R., and Jahed ...
. Ghasemi, E., Amnieh, H. B., and Bagherpour, R. (۲۰۱۶). ...
. Shirani Faradonbeh, R., Monjezi, M., and Jahed Armaghani, D. ...
. Hasanipanah, M., Shahnazar, A., Arab, H., Golzar, S.B., and ...
. Yu, Q., Monjezi, M., Mohammed, A.S., Dehghani, H., Armaghani, ...
. Kumar, S., Mishra, A.K., and Choudhary, B.S. (۲۰۲۲). Prediction ...
. Li, C., Zhou, J., Khandelwal, M., Zhang, X., Monjezi, ...
. Fan, J., Wu, L., Ma, X., Zhou, H., and ...
. Ghorbani, M.A., Deo, R.C., Yaseen, Z.M., H Kashani, M., ...
. Friedman, J.H. (۲۰۰۱). Greedy function approximation: a gradient boosting ...
. Friedman, J.H. (۲۰۰۲). Stochastic gradient boosting. Computational statistics & ...
. Friedman, J., Hastie, T., and Tibshirani, R. (۲۰۰۰). Additive ...
. Hastie, T., Tibshirani, R., and Friedman, J. (۲۰۰۱). The ...
. Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, ...
. Chen, T. and Guestrin, C. (۲۰۱۶, August). Xgboost: A ...
. Zhou, J., Li, E., Wang, M., Chen, X., Shi, ...
. Gao, W., Wang, W., Dimitrov, D., and Wang, Y. ...
. Kennedy, J. and Eberhart, R. (۱۹۹۵, November). Particle swarm ...
. Cao, Y., Zhang, H., Li, W., Zhou, M., Zhang, ...
. Mirjalili, S., Mirjalili, S.M., and Lewis, A. (۲۰۱۴). Grey ...
. Emary, E., Yamany, W., Hassanien, A. E., and Snasel, ...
. Song, X., Tang, L., Zhao, S., Zhang, X., Li, ...
. El-Kenawy, E.S.M., Eid, M.M., Saber, M., and Ibrahim, A. ...
. Ferreira, C. (۲۰۰۱). Gene expression programming: a new adaptive ...
. Faradonbeh, R.S., Armaghani, D.J., Amnieh, H.B., and Mohamad, E.T. ...
. Zhou, J., Li, C., Koopialipoor, M., Jahed Armaghani, D., ...
. Faradonbeh, R. S., Hasanipanah, M., Amnieh, H. B., Armaghani, ...
. Breiman, L. (۲۰۰۱). Random forests. Machine learning, ۴۵, ۵-۳۲ ...
. Vigneau, E., Courcoux, P., Symoneaux, R., Guérin, L., and ...
. Gao, W., Guirao, J. L., Basavanagoud, B., and Wu, ...
. Dou, J., Yunus, A.P., Bui, D.T., Merghadi, A., Sahana, ...
. Himanshu, V.K., Roy, M.P., Mishra, A.K., Paswan, R.K., Panda, ...
. Shakeri, J., Shokri, B.J., and Dehghani, H. (۲۰۲۰). Prediction ...
. Shokri, B.J., Dehghani, H., and Shamsi, R. (۲۰۲۰). Predicting ...
. Bhatawdekar, R.M., Kumar, R., Sabri Sabri, M.M., Roy, B., ...
. James, G., Witten, D., Hastie, T., and Tibshirani, R. ...
. Chakraborty, S. and Bhattacharya, S. (۲۰۲۱). Application of XGBoost ...
. Sharma, M., Agrawal, H., and Choudhary, B. S. (۲۰۲۲). ...
. Taylor, K.E. (۲۰۰۱). Summarizing multiple aspects of model performance ...
. Nikafshan Rad, H., Bakhshayeshi, I., Wan Jusoh, W.A., Tahir, ...
نمایش کامل مراجع