An Unsupervised Anomaly Detection Model for Weighted Heterogeneous Graph

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 171

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JADM-11-2_007

تاریخ نمایه سازی: 27 تیر 1402

چکیده مقاله:

Nowadays, whereas the use of social networks and computer networks is increasing, the amount of associated complex data with graph structure and their applications, such as classification, clustering, link prediction, and recommender systems, has risen significantly. Because of security problems and societal concerns, anomaly detection is becoming a vital problem in most fields. Applications that use a heterogeneous graph, are confronted with many issues, such as different kinds of neighbors, different feature types, and differences in type and number of links. So, in this research, we employ the HetGNN model with some changes in loss functions and parameters for heterogeneous graph embedding to capture the whole graph features (structure and content) for anomaly detection, then pass it to a VAE to discover anomalous nodes based on reconstruction error. Our experiments on AMiner data set with many base-lines illustrate that our model outperforms state-of-the-arts methods in heterogeneous graphs while considering all types of attributes.

نویسندگان

Nosratali Ashrafi-Payaman

Department of Electrical and Computer Engineering, Faculty of Engineering, Kharazmi University, Tehran, Iran.

Maryam Khazaei

Department of Electrical and Computer Engineering, Faculty of Engineering, Kharazmi University, Tehran, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • C. Zhang, D. Song, C. Huang, A. Swami, and N. ...
  • W. Eberle and L. Holder, “Discovering structural anomalies in graph-based ...
  • L. Akoglu, M. McGlohon, and C. Faloutsos, “Oddball: Spotting Anomalies ...
  • E. Muller, P. I. Sanchez, Y. Mulle, and K. Bohm, ...
  • X. Xu, N. Yuruk, Z. Feng, and T. A. J. ...
  • H. Sun, J. Huang, J. Hanr, H. Deng, P. Zhaor, ...
  • T. N. Kipf and M. Welling, “Semi-supervised classification with graph ...
  • H. S. Sarvarani and F. Abdali-mohammadi, “An Ensemble Convolutional Neural ...
  • B. Perozzi and S. Skiena, “DeepWalk : Online Learning of Social ...
  • A. Grover, “node۲vec : Scalable Feature Learning for Networks,” in KDD ...
  • J. Tang and M. Qu, “LINE : Large-scale Information Network Embedding,” ...
  • D. Duan, L. Tong, Y. Li, J. Lu, L. Shi, ...
  • S. Bandyopadhyay, N. Lokesh, S. V. Vivek, and M. N. ...
  • K. Ding, J. Li, N. Agarwal, and H. Liu, “Inductive ...
  • W. Khan and M. Haroon, “An unsupervised deep learning ensemble ...
  • Y. Li, X. Huang, J. Li, M. Du, and N. ...
  • S. X. Rao et al., “xFraud: Explainable Fraud Transaction Detection,” ...
  • D. Wang et al., “A semi-supervised graph attentive network for ...
  • Y. Yang, Z. Guan, J. Li, W. Zhao, J. Cui, ...
  • G. Pang, A. Van Den Hengel, C. Shen, and L. ...
  • K. Zhao et al., “Deep Adversarial Completion for Sparse Heterogeneous ...
  • N. Ashrafi-Payaman, M. R. Kangavari, S. Hosseini, and A. M. ...
  • N. Ashrafi-Payaman and M. R. Kangavari, “Graph hybrid summarization,” J. ...
  • W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation ...
  • P. Veličković, A. Casanova, P. Liò, G. Cucurull, A. Romero, ...
  • X. Ma et al., “A Comprehensive Survey on Graph Anomaly ...
  • A. Jinwon and C. Sungzoon, “Variational Autoencoder based Anomaly Detection ...
  • S. Xiuyao, W. Mingxi, C. Jermaine, and S. Ranka, “Conditional ...
  • K. Ding, J. Li, and H. Liu, “Interactive anomaly detection ...
  • Z. Peng, M. Luo, J. Li, H. Liu, and Q. ...
  • K. Ding, J. Li, R. Bhanushali, and H. Liu, “Deep ...
  • H. Fan, F. Zhang, and Z. Li, “Anomalydae: Dual Autoencoder ...
  • Z. Chen, B. Liu, M. Wang, P. Dai, J. Lv, ...
  • نمایش کامل مراجع