Vehicle fault diagnosis with deep learning
سال انتشار: 1402
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 198
فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
CARSE07_273
تاریخ نمایه سازی: 5 تیر 1402
چکیده مقاله:
At present, automobiles have become a common means of transportation, but with the increase of vehicles, safety issues have gradually emerged. Therefore, the assembly, manufacture and production of vehicles require systematic testing and rigorous inspection. Therefore, defect detection of vehicle parts is particularly important. Vehicle parts defect detection has evolved from manual detection of traditional classification methods to machine vision methods. In this paper, the deep learning method is used to firstly detect the defects of vehicle parts through the training of VGG۱۶ network structure model. The accuracy rate is ۹۴.۳۶. Secondly, the VGG۱۶ network structure model is improved. By introducing the inceptionv۳ module, the width of the model is increased on the basis of depth, the image is better recognized with an accuracy of ۹۵.۲۹. However, the accuracy of the traditional HOG+SVM classification method is only ۹۳.۸۸, and the efficiency of both methods is higher than that of the traditional method.
کلیدواژه ها:
Artificial Intelligence - Car Fault - Deep Learning