Autonomous Estimation of Patients’ Neuropsychological State Using Convolutional Neural Networks
محل انتشار: مجله شناخت عصبی تکاملی، دوره: 1، شماره: 1
سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 179
فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JNCOG-1-1_009
تاریخ نمایه سازی: 29 خرداد 1402
چکیده مقاله:
The number of patients with neuropsychological problems is increasing rapidly in the world. Autonomous methods are replacing the traditional diagnosis methods in detection and classification of many mental and neurological problems. Machine learning algorithms and especially deep neural networks are able to diagnose various neurological and psychological complications automatically. In this paper, a machine learning based framework is used for autonomous estimation of patients’ neuropsychological state. The proposed framework can automatically diagnose neuropsychological state of the patients and present a personalized solution for their problems. A convolutional neural networks is used for automatic profiling of patients and to classify their mental state according to their EEG signals. The proposed framework can be used to help patients to have better life experience.
کلیدواژه ها:
نویسندگان
Somaye Mohammadyan
Faculty of Computer Science and Engineering, Shahid Beheshti University, Tehran, Iran
Keivan Navi
Faculty of Computer Science and Engineering, Shahid Beheshti University, Tehran, Iran
Babak Majidi
Department of Computer Engineering, Khatam University, Tehran, Iran