Thematic analysis of urban highway crash narratives using machine learning classifiers

سال انتشار: 1401
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 219

فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

TTC19_189

تاریخ نمایه سازی: 26 خرداد 1402

چکیده مقاله:

This study presents a novel and robust framework to consequently classify fataland injury crash narratives obtained from urban highway crash reports of Tehran,and extract accident causal factors from unstructured raw texts. With an evergrowingamount of textual information stored in crash narratives, automaticinformation retrieval is highly regarded. Five main accident causal categories,namely, driver behavior, inadequate road characteristics, inadequate trafficdesign, roadway intrusion, and vehicle malfunction have been chosen as classlabels, to classify crash narratives in this research. The approach towards solvingthis multiclass classification problem has been multiple binary classifications.Machine learning classifier SVM (support vector machines) with linear kerneland Decision Tree Networks have proved to outperform other ML classifieralgorithms. Classification reports reveal the sensitivity of drivers’ perilousbehavior, among all possible accidental causes, in injury and fatal crashes ofTehran urban highways. This research proves Natural language processing (NLP)algorithms implementation in accident analysis to be promising particularlywhen trained by a large corpus of narratives.

نویسندگان

Zohreh Alizadeh Elizei

PhD student, School of Industrial Engineering (SIE) Iran University of Science & Technology, Narmak, Tehran, Iran

Seyed Jafar Sadjadi

Professor, School of Industrial Engineering (SIE), Iran University of Science & Technology, Narmak, Tehran, Iran