Optimization of Brace Connections in Light Weight Steel Frame (LSF) by Neural Network
محل انتشار: نهمین کنگره بین الملی مهندسی عمران
سال انتشار: 1391
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,805
فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICCE09_1404
تاریخ نمایه سازی: 7 مهر 1391
چکیده مقاله:
In recent years, light weight steel framing system has been proposed as an economic system and earthquake-resistant. Tendency of the mass constructors to this system is due to being full industrialprocess. One of the resistant systems against lateral load in cold-formed steel structure is applying of braces which optimization and connections improvement for these braces have been considered by experts of this field research. In this paper, different experimental studies and normalization andsimulation by ANN were used. The results of this research have been applied for create a nonlinearrelationship. First all of data such as input, target must be normalized and then simulating and training by neural network should be done. In this research, two layers have been used. One of these layers is sigmoidlayer. Results show that optimal connections in light weight steel framing system have suitable plasticity, load capacity and nonlinear relation. Statistical analysis results on SPSS software show that there is no significant different between neural network and experimental results (P-Value > 0.05
کلیدواژه ها:
نویسندگان
Hamid Reza Vosoughifar
Asst. Professor, Faculty of Engineering, Islamic Azad University, South Tehran Branch
Arezoo Mohammadi
Student of Master of Science, Department of civil engineering, University of Zanjan
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :