An Intelligent Diagnosis of Liver Diseases using Different Decision Tree Models

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 131

متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JKMU-30-2_008

تاریخ نمایه سازی: 11 اردیبهشت 1402

چکیده مقاله:

Background: Liver cancer is the third most common cause of cancer mortality. Artificial intelligence, as a diagnostic tool, can reduce physicians’ working load. However, the main fear is that due to the existence of many causes and factors, liver diseases are not easily diagnosed. This study analyzes liver disease intelligently. Various decision tree models were used in this research. Methods: The records of ۵۸۳ patients in the North East of Andhra Pradesh, India, registered at the University of California in ۲۰۱۲, were collected. Decision tree models were compared by three measures of sensitivity, accuracy, and area under the ROC curve. Results: In this study, Decision-Stump showed better results than other models. Accuracy, sensitivity, and ROC curve of Decision-Stump were ۷۱.۳۰۵۸, ۱, and ۰.۶۴۶, respectively. Conclusion: The superior model with the highest precision is the Decision-Stump model. Therefore, the Decision-Stump model is recommended for liver disease diagnosis. This paper is invaluable for the allocation of health resources for risky people.

کلیدواژه ها:

نویسندگان

Mitra Montazeri

Medical Informatics Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran

Mahdieh Montazeri

Medical Informatics Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran

Leila Ahmadian

Medical Informatics Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran

Mohammad Javad Zahedi

Physiology Research Center and Department of Gastroenterology, Kerman University of Medical Sciences, Kerman, Iran

Amin Beygzadeh

Assistant Professor of Medical Education, Medical Education Leadership and Management Research Center, Kerman University of Medical Sciences, Kerman, Iran