Probable Maximum Precipitation (PMP) Prediction Using Rule-Based Fuzzy Inference System: A Comparison with Classic Methods

سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 232

فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JHE-5-9_001

تاریخ نمایه سازی: 28 فروردین 1402

چکیده مقاله:

Precipitation is predicted for different days of the year using fuzzy logic, the Mamdani fuzzy system, and IF-THEN rules. The input variables include five parameters of relative humidity, cloud cover, wind direction, temperature, and surface pressure, each with three membership functions ranging from  ۰ to ۱. The final answer will likely be the amount of rainfall. All input variables are fuzzy, and two types of membership functions are selected. As many as ۵۱ rules are considered for each station. Finally, the best situation of precipitation is chosen, and PMP obtained is applied to Kahir catchment basin, Sistan and Baluchistan. The fuzzy PMP is then calculated and compared with the Hershfield classic method for calculating PMP. Results show that fuzzy PMP estimation is more accurate and reliable for the studied area than the Hershfield method. All implementations are performed with MATLAB.

کلیدواژه ها:

Fuzzy logic ، Mamdani fuzzy inference system ، Probable Maximum Precipitation (PMP) ، Hershfield classic method

نویسندگان

Mehdi Azhdary Moghaddam

University of Sistan and Baluchestan

Soroosh Sanayee

University of Sistan and Baluchestan

Mohsen Rashki

University of Sistan and Baluchestan