Probable Maximum Precipitation (PMP) Prediction Using Rule-Based Fuzzy Inference System: A Comparison with Classic Methods
محل انتشار: فصلنامه علوم آب و محیط زیست، دوره: 5، شماره: 9
سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 232
فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JHE-5-9_001
تاریخ نمایه سازی: 28 فروردین 1402
چکیده مقاله:
Precipitation is predicted for different days of the year using fuzzy logic, the Mamdani fuzzy system, and IF-THEN rules. The input variables include five parameters of relative humidity, cloud cover, wind direction, temperature, and surface pressure, each with three membership functions ranging from ۰ to ۱. The final answer will likely be the amount of rainfall. All input variables are fuzzy, and two types of membership functions are selected. As many as ۵۱ rules are considered for each station. Finally, the best situation of precipitation is chosen, and PMP obtained is applied to Kahir catchment basin, Sistan and Baluchistan. The fuzzy PMP is then calculated and compared with the Hershfield classic method for calculating PMP. Results show that fuzzy PMP estimation is more accurate and reliable for the studied area than the Hershfield method. All implementations are performed with MATLAB.
کلیدواژه ها:
Fuzzy logic ، Mamdani fuzzy inference system ، Probable Maximum Precipitation (PMP) ، Hershfield classic method
نویسندگان
Mehdi Azhdary Moghaddam
University of Sistan and Baluchestan
Soroosh Sanayee
University of Sistan and Baluchestan
Mohsen Rashki
University of Sistan and Baluchestan