Efficient Feature Selection Method using Binary Teaching-learning-based Optimization Algorithm

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 306

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JADM-11-1_003

تاریخ نمایه سازی: 20 فروردین 1402

چکیده مقاله:

High dimensionality is the biggest problem when working with large datasets. Feature selection is a procedure for reducing the dimensionality of datasets by removing additional and irrelevant features; the most effective features in the dataset will remain, increasing the algorithms’ performance. In this paper, a novel procedure for feature selection is presented that includes a binary teaching learning-based optimization algorithm with mutation (BMTLBO). The TLBO algorithm is one of the most efficient and practical optimization techniques. Although this algorithm has fast convergence speed and it benefits from exploration capability, there may be a possibility of trapping into a local optimum. So, we try to establish a balance between exploration and exploitation. The proposed method is in two parts: First, we used the binary version of the TLBO algorithm for feature selection and added a mutation operator to implement a strong local search capability (BMTLBO). Second, we used a modified TLBO algorithm with the self-learning phase (SLTLBO) for training a neural network to show the application of the classification problem to evaluate the performance of the procedures of the method. We tested the proposed method on ۱۴ datasets in terms of classification accuracy and the number of features. The results showed BMTLBO outperformed the standard TLBO algorithm and proved the potency of the proposed method. The results are very promising and close to optimal.

نویسندگان

S. Hosseini

Department of Computer Science, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran.

M. Khorashadizade

Department of Computer Science, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • M. F. Ahmad, N. A. M. Isa, W. H. Lim, ...
  • M. Paniri, M. B. Dowlatshahi, and H. Nezamabadi-Pour, “MLACO: A ...
  • X.-Y. Liu, Y. Liang, S. Wang, Z.-Y. Yang, and H.-S. ...
  • A. Purohit, N. S. Chaudhari, and A. Tiwari, “Construction of ...
  • L. Abualigah and A. Diabat, “Chaotic binary group search optimizer ...
  • R. Kundu, S. Chattopadhyay, E. Cuevas, and R. Sarkar, “AltWOA: ...
  • A. M. Ibrahim, M. A. Tawhid, and R. K. Ward, ...
  • Z. A. Varzaneh, S. Hossein, S. E. Mood, and M. ...
  • R. Ramasamy Rajammal, S. Mirjalili, G. Ekambaram, and N. Palanisamy, ...
  • M. Taradeh et al., “An evolutionary gravitational search-based feature selection,” ...
  • R. Guha, M. Ghosh, A. Chakrabarti, R. Sarkar, and S. ...
  • Z. Shojaee, S. A. Shahzadeh Fazeli, E. Abbasi, and F. ...
  • M. Tubishat et al., “Dynamic Salp swarm algorithm for feature ...
  • I. Aljarah et al., “A dynamic locality multi-objective salp swarm ...
  • M. Manonmani and S. Balakrishnan, “Feature Selection Using Improved Teaching ...
  • M. Allam and M. Nandhini, “Optimal feature selection using binary ...
  • S. Thawkar, “A hybrid model using teachinglearning-based optimization and Salp ...
  • R. V. Rao, V. J. Savsani, and D. P. Vakharia, ...
  • A. Taheri, K. RahimiZadeh, and R. V. Rao, “An efficient ...
  • نمایش کامل مراجع