Adaptive Pruning of Convolutional Neural Network

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 191

فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JADM-11-1_005

تاریخ نمایه سازی: 20 فروردین 1402

چکیده مقاله:

Deep convolutional neural networks (CNNs) have attained remarkable success in numerous visual recognition tasks. There are two challenges when adopting CNNs in real-world applications: a) Existing CNNs are computationally expensive and memory intensive, impeding their use in edge computing; b) there is no standard methodology for designing the CNN architecture for the intended problem. Network pruning/compression has emerged as a research direction to address the first challenge, and it has proven to moderate CNN computational load successfully. For the second challenge, various evolutionary algorithms have been proposed thus far. The algorithm proposed in this paper can be viewed as a solution to both challenges. Instead of using constant predefined criteria to evaluate the filters of CNN layers, the proposed algorithm establishes evaluation criteria in online manner during network training based on the combination of each filter’s profit in its layer and the next layer. In addition, the novel method suggested that it inserts new filters into the CNN layers. The proposed algorithm is not simply a pruning strategy but determines the optimal number of filters. Training on multiple CNN architectures allows us to demonstrate the efficacy of our approach empirically. Compared to current pruning algorithms, our algorithm yields a network with a remarkable prune ratio and accuracy. Despite the relatively high computational cost of an epoch in the proposed algorithm in pruning, altogether it achieves the resultant network faster than other algorithms.

کلیدواژه ها:

Convolutional Neural Network (CNN) ، Adaptive Architecture ، Pruning ، Compression

نویسندگان

S. Ahmadluei

Department of Computer and Information Technology Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran.

K. Faez

Department of Electrical Engineering, Amirkabir University of Technology, Tehran, Iran.

B. Masoumi

Department of Computer Engineering, Science and Research Branch, Islamic Azad University, Nokhbegan Bollovard, Qazvin, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • N. Elyasi and M. Hosseini Moghadam, “Classification of Skin Lesions ...
  • F. Salimian Najafabadi and M. T. Sadeghi, “AgriNet: a New ...
  • R. Ranjan, V. M. Patel, and R. Chellappa, “HyperFace: A ...
  • H. Filali, J. Riffi, I. Aboussaleh, A. M. Mahraz, and ...
  • M. Alam, J.-F. Wang, C. Guangpei, L. Yunrong, and Y. ...
  • J. Guo, J. Yang, H. Yue, H. Tan, C. Hou, ...
  • X. Zhang, G. Chen, K. Saruta, and Y. Terata, “A ...
  • BoukercheAzzedine and HouZhijun, “Object Detection Using Deep Learning Methods in ...
  • P. Wang, Q. Wu, C. Shen, A. Dick, and A. ...
  • N. Takahashi, M. Gygli, and L. van Gool, “AENet: Learning ...
  • N. Kruger et al., “Deep hierarchies in the primate visual ...
  • Y. Bengio, “Learning Deep Architectures for AI,” Found. Trends® Mach. ...
  • KrizhevskyAlex, SutskeverIlya, and H. E., “ImageNet classification with deep convolutional ...
  • S. Liu and W. Deng, “Very deep convolutional neural network-based ...
  • C. Szegedy et al., “Going deeper with convolutions,” Proc. IEEE ...
  • K. He, X. Zhang, S. Ren, and J. Sun, “Deep ...
  • G. Huang, Z. Liu, L. Van Der Maaten, and K. ...
  • Z. Q. Zhao, P. Zheng, S. T. Xu, and X. ...
  • T. Choudhary, V. Mishra, A. Goswami, and J. Sarangapani, “A ...
  • D. Blalock, J. J. Gonzalez Ortiz, J. Frankle, and J. ...
  • X. Chen, J. Mao, and J. Xie, “Comparison Analysis for ...
  • Y. He, X. Dong, G. Kang, Y. Fu, C. Yan, ...
  • L. Cai, Z. An, C. Yang, and Y. Xu, "Softer ...
  • M. Mousa-Pasandi, M. Hajabdollahi, N. Karimi, S. Samavi, and S. ...
  • Z. Wang, C. Li, and X. Wang, “Convolutional neural network ...
  • PeiSongwen, WuYusheng, GuoJin, and QiuMeikang, “Neural Network Pruning by Recurrent ...
  • H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. ...
  • S. Han, J. Pool, J. Tran, and W. J. Dally, ...
  • X. Liu, B. Li, Z. Chen, and Y. Yuan, “Exploring ...
  • P. Molchanov, A. Mallya, S. Tyree, I. Frosio, and J. ...
  • C. H. Sarvani, M. Ghorai, S. R. Dubey, and S. ...
  • M. Soltani, S. Wu, J. Ding, R. Ravier, and V. ...
  • C. Hur and S. Kang, “Entropy-based pruning method for convolutional ...
  • Y. Si and W. Guo, “Application of A Taylor Expansion ...
  • C. Yu, J. Wang, Y. Chen, and X. Qin, “Transfer ...
  • Z. Huang, L. Li, and H. Sun, “Global biased pruning ...
  • B. Wang, F. Ma, L. Ge, H. Ma, H. Wang, ...
  • T. Xu et al., “CDP: Towards Optimal Filter Pruning via ...
  • Z. Chen, T. B. Xu, C. Du, C. L. Liu, ...
  • A. Gonzalez-Garcia, D. Modolo, and V. Ferrari, “Do Semantic Parts ...
  • Y. Le Cun, Y. Le Cun, J. S. Denker, and ...
  • Z. Wang, W. Hong, Y. P. Tan, and J. Yuan, ...
  • Y. Zhang, Y. Yuan, and Q. Wang, “ACP: Adaptive Channel ...
  • B. Zhou, D. Bau, A. Oliva, and A. Torralba, “Interpreting ...
  • C. Zhao, B. Ni, J. Zhang, Q. Zhao, W. Zhang, ...
  • R. Q. Quiroga, L. Reddy, G. Kreiman, C. Koch, and ...
  • D. Bau, J.-Y. Zhu, H. Strobelt, A. Lapedriza, B. Zhou, ...
  • C. Li, M. Z. Zia, Q. H. Tran, X. Yu, ...
  • C. Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and ...
  • Z. Zhuang et al., “Discrimination-Aware Channel Pruning for Deep Neural ...
  • Z. Hou and S. Y. Kung, “A discriminant information approach ...
  • E. Saraee, M. Jalal, and M. Betke, “Visual complexity analysis ...
  • A. S. Morcos, D. G. T. Barrett, N. C. Rabinowitz, ...
  • J. Ukita, “Causal importance of low-level feature selectivity for generalization ...
  • Y. Wen, K. Zhang, Z. Li, and Y. Qiao, “A ...
  • H. Peng and S. Yu, “Beyond softmax loss: Intra-concentration and ...
  • H. M. Yang, X. Y. Zhang, F. Yin, and C. ...
  • S. Son, S. Nah, and K. M. Lee, “Clustering Convolutional ...
  • Z. Zhou, W. Zhou, H. Li, and R. Hong, “Online ...
  • S. Yu, K. Wickstrom, R. Jenssen, and J. Principe, “Understanding ...
  • Y. Li et al., “Exploiting kernel sparsity and entropy for ...
  • E. Elhamifar and R. Vidal, “Sparse subspace clustering: Algorithm, theory, ...
  • B. McWilliams and G. Montana, “Subspace clustering of high-dimensional data: ...
  • M. Liu, Y. Wang, and Z. Ji, “Self-Supervised Convolutional Subspace ...
  • P. Ji, T. Zhang, H. Li, M. Salzmann, and I. ...
  • S. Roy, P. Panda, G. Srinivasan, and A. Raghunathan, “Pruning ...
  • Y. He, Y. Ding, P. Liu, L. Zhu, H. Zhang, ...
  • Z. Zhou, W. Zhou, R. Hong, and H. Li, “Online ...
  • P. Singh, V. K. Verma, P. Rai, and V. P. ...
  • Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A ...
  • B. Aaron, D. E. Tamir, N. D. Rishe, and A. ...
  • U. von Luxburg, “A tutorial on spectral clustering,” Stat. Comput. ...
  • L. Rosasco, M. Belkin, and E. De Vito, “On Learning ...
  • C. Xia, W. Hsu, M. L. Lee, and B. C. ...
  • A. Achille and S. Soatto, “Emergence of invariance and disentanglement ...
  • L. Decreusefond, I. Flint, N. Privault, and G. L. Torrisi, ...
  • H. Wang, P. Chen, and S. Kwong, “Building Correlations between ...
  • W. Liu, Y. Wen, Z. Yu, and M. Yang, “Large-Margin ...
  • A. Krizhevsky and A. Krizhevsky, “Learning multiple layers of features ...
  • M. Lin et al., “Hrank: Filter pruning using high-Rank feature ...
  • H. Pan, Z. Chao, J. Qian, B. Zhuang, S. Wang, ...
  • C. Zhao, B. Ni, J. Zhang, Q. Zhao, W. Zhang, ...
  • Z. Huang and N. Wang, “Data-Driven Sparse Structure Selection for ...
  • R. Yu et al., “NISP: Pruning Networks Using Neuron Importance ...
  • Y. He, X. Zhang, and J. Sun, “Channel Pruning for ...
  • T. Wu, X. Li, D. Zhou, N. Li, and J. ...
  • نمایش کامل مراجع