تاثیر کیفیت سود بر پیش بینی ورشکستگی با استفاده از شبکه عصبی مصنوعی
سال انتشار: 1393
نوع سند: مقاله ژورنالی
زبان: فارسی
مشاهده: 334
فایل این مقاله در 27 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_FAAR-6-22_006
تاریخ نمایه سازی: 15 اسفند 1401
چکیده مقاله:
پیش بینی تداوم فعالیت عملیاتی واحدهای اقتصادی در دوره های آتی، یکی از عناصر مهم در تصمیم گیری برای سرمایه گذاران بوده و در این میان انتخاب متغیرهای پیش بینی کننده همواره به عنوان یکی از مسائل چالش برانگیز در ادبیات پیش بینی ورشکستگی مطرح بوده است که در راس آن ها همواره سود حسابداری و متغیرهای سود آوری قرار داشته است. بنابراین کیفیت سود حسابداری از معیارهای با اهمیت در تصمیم گیری های سرمایه گذاری در پیش بینی ورشکستگی محسوب می گردد. این پژوهش سعی بر آن دارد تا با مقایسه توان پیش بینی متغیرهای سودآوری شرکت هایی با سود باکیفیت و شرکت هایی با سود بی کیفیت، اثر کیفیت سود بر کارائی متغیرهای سودآوری در پیش بینی ورشکستگی را مورد بررسی قرار دهد. در نمونه ای که از بین شرکت های حاضر در بورس اوراق بهادار تهران انتخاب گردید، ابتدا بر اساس آزمون کولموگوروف-اسمیرنوف به بررسی نرمال بودن توزیع پرداخته شده، در ادامه میزان دقت و خطای نوع اول و دوم مدل شبکه عصبی برای دو گروه شرکت های با کیفیت سود بالا و پایین بررسی شده و سپس از آزمون t به منظور مقایسه میانگین دو نمونه در سطح اطمینان ۹۵% استفاده گردید. یافته ها نشان می دهد که دقت پیش بینی شبکه عصبی مصنوعی برای شرکت های با سود با کیفیت به طور معنی داری بیشتر از شرکت های با سود بی کیفیت می باشد.
نویسندگان
بیتا مشایخی
دانشیار گروه حسابداری،دانشکده مدیریت،دانشگاه تهران
حمیدرضا گنجی
دانشجوی دکتری حسابداری،دانشکده مدیریت،دانشگاه تهران
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :