Hybrid Time Delay Petri Nets as a Mathematical Novel Tool to Model Dynamic System with Current Sample Time
سال انتشار: 1397
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 214
فایل این مقاله در 21 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_COAM-3-1_003
تاریخ نمایه سازی: 30 بهمن 1401
چکیده مقاله:
The existing modeling methods using Petri Nets, have been successfully applied to model and analyze dynamic systems. However, these methods are not capable of modeling all dynamic systems such as systems with the current sample time signals, systems including various subsystems and multi-mode systems. This paper proposes Hybrid Time Delay Petri Nets (HTDPN) to solve the problem. In this approach, discrete and continuous Petri Nets are combined so that the continuous PNs part and the discrete PNs are responsible for past time samples and current sample time, respectively. To evaluate the performance of the proposed tool, it is employed to model a legless piezoelectric capsubot robot as a multi modes system and a PID controller, in which the gains tuned by the Genetic Algorithm are designed for the resulting model by HTDPN. Results show that the proposed method is faster in terms of mathematical calculations which can reduce the simulation time and complexity of complicated systems. It would be observed that the proposed approach makes the PID controller design simpler as well. In addition, a comparative study of capsubot has been performed. Simulation results show that the presented method is encouraging compared to the predictive control, which is used in the literature.
کلیدواژه ها:
نویسندگان
Alireza Ahangarani Farahani
Electrical and Computer Engineering Department, Semnan University, Semnan, Iran
Abbas Dideban
Department of Electrical and Computer Engineering,Semnan university, Semnan, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :