Noise Reduction of Depth Cameras Images Based on Deep Neural Network
محل انتشار: مجله مهندسی برق مجلسی، دوره: 14، شماره: 3
سال انتشار: 1399
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 207
فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_MJEE-14-3_012
تاریخ نمایه سازی: 25 بهمن 1401
چکیده مقاله:
Today, infrared sensors or depth sensors are widely used to control applications, games, information acquisition, dynamic and static ۳D scenes. Despite the widespread use of these images, their quality is limited to low-quality images, as the infrared sensor does not have high resolution and the images produced by it have noise. Therefore, given the problems and the importance of using ۳-D images, the quality of these images should be improved in order to provide accurate images from depth cameras. In this paper, the noise reduction of depth images using convolutional neural networks is considered. A convolutional neural network with a depth of ۲۰ and three layers and a pre-trained neural network is used. We developed the system and tested its performance for two datasets of depth and color images, Middlebury and EURECOM Kinect Face. Results show that for EURECOM Kinect Face images, PSNR improvement is approximately ۸ to ۱۵ dB and for Middlebury images the PSNR improvement is about ۵ to ۱۴ dB.
کلیدواژه ها:
نویسندگان
Seyed Mehrdad Mahdavi
Department of Computer engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
Mohsen Ashourian
Department of Electrical Engineering, Majlesi Branch, Islamic Azad University, Majlesi, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :