Electricity Demand Prediction by a Transformer-Based Model

سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 169

فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_MJEE-16-4_009

تاریخ نمایه سازی: 25 بهمن 1401

چکیده مقاله:

The frighteningly high levels of power consumption at present are caused mainly by the expanding global population and the accessibility of energy-hungry smart technologies. So far, various simulation tools, engineering- and AI-based methodologies have been utilized to anticipate power consumption effectively. While engineering approaches forecast using dynamic equations, AI-based methods forecast using historical data. The modeling of nonlinear electrical demand patterns is still lacking for durable solutions, however, the available approaches are only effective for resolving transient dependencies. Furthermore, because they are only based on historical data, the current methodologies are static in nature. In this research, we present a system based on deep learning to anticipate power consumption while accounting for long-term historical relationships. In our approach, a transformer-based model is used for the prediction of electricity demand on data collected from the regional facilities in Iraq. According to the conducted experiments, our approach claims competitive performance, achieving an error rate of ۲.۰ in predicting ۱-day-ahead of electricity demand in the test samples.

نویسندگان

Ahmed Mohammed Mahmood

Department of Optical Techniques, AlNoor University College, Iraq

Musaddak Maher Abdul Zahra

Computer Techniques Engineering Department, Al-Mustaqbal University College, Hillah ۵۱۰۰۱, Iraq

Waleed Hamed

Medical technical college, Al-Farahidi University, Baghdad, Iraq

Bashar S. Bashar

Al-Nisour University College, Baghdad, Iraq

Alaa Hussein Abdulaal

Medical Device Engineering, Ashur University College, Baghdad, Iraq

Taif Alawsi

Scientific Research Center, Al-Ayen University, Thi-Qar, Iraq

Ali Hussein Adhab

Department of Medical Laboratory Technics, Al-Zahrawi University College, Karbala, Iraq

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Saoud, Lyes Saad, Hasan Al-Marzouqi, and Ramy Hussein. "Household Energy ...
  • Sun, Lisha, and David Lubkeman. "Agent-based modeling of feeder-level electric ...
  • L’Heureux, Alexandra, Katarina Grolinger, and Miriam AM Capretz. "Transformer-Based Model ...
  • Al-Bahrani, Loau Tawfak, Mehdi Seyedmahmoudian, Ben Horan, and Alex Stojcevski. ...
  • Dong, Ming. "A data-driven long-term dynamic rating estimating method for ...
  • Nourani, Vahid, Zahra Razzaghzadeh, Aida Hosseini Baghanam, and Amir Molajou. ...
  • Johannesen, Nils Jakob, Mohan Kolhe, and Morten Goodwin. "Relative evaluation ...
  • Hong, Shin-Ki, Sung Gu Lee, and Myungchin Kim. "Assessment and ...
  • Cao, Jianwen, Bizhong Xia, and Jie Zhou. "An Active Equalization ...
  • Gjelaj, Marjan, Nataly Bañol Arias, Chresten Traeholt, and Seyedmostafa Hashemi. ...
  • Gao, Yuan, and Yingjun Ruan. "Interpretable deep learning model for ...
  • Pradhan, Pravakar, Iftekhar Ahmad, Daryoush Habibi, Ganesh Kothapalli, and Mohammad ...
  • Pouladi, Parsa, Abbas Afshar, Mohammad Hadi Afshar, Amir Molajou, and ...
  • Van den Berg, M. A., I. Lampropoulos, and T. A. ...
  • Tang, Binh, and David S. Matteson. "Probabilistic transformer for time ...
  • Lahooti Eshkevari, Alireza, Ali Mosallanejad, and Mohammadsadegh Sepasian. "In‐depth study ...
  • Pradhan, Pravakar, Iftekhar Ahmad, Daryoush Habibi, Ganesh Kothapalli, and Mohammad ...
  • Tziovani, Lysandros, Lenos Hadjidemetriou, Charalampos Charalampous, Maria Tziakouri, Stelios Timotheou, ...
  • Ha, Sooji, Daniel J. Marchetto, Sameer Dharur, and Omar I. ...
  • Wu, Binrong, Lin Wang, and Yu-Rong Zeng. "Interpretable wind speed ...
  • Rocha, Oscar David Ariza, Kateryna Morozovska, Tor Laneryd, Ola Ivarsson, ...
  • Zhou, Feng, Peng Zhao, Min Lei, Changxi Yue, Jicheng Yu, ...
  • Baroni, Bruno R., Wadaed Uturbey, André MG Costa, and Samuel ...
  • Brinkel, N. B. G., W. L. Schram, T. A. AlSkaif, ...
  • Choi, Eunjeong, Soohwan Cho, and Dong Keun Kim. "Power demand ...
  • Zweistra, Marisca, Stan Janssen, and Frank Geerts. "Large scale smart ...
  • Wörner, Ralf, Inna Morozova, Danting Cao, Daniela Schneider, Martin Neuburger, ...
  • Yan, Chun, Meixuan Li, and Wei Liu. "Transformer fault diagnosis ...
  • Jiang, Weiwei. "Deep learning based short‐term load forecasting incorporating calendar ...
  • Gómez, Andrea Molina, Kateryna Morozovska, Tor Laneryd, and Patrik Hilber. ...
  • Rodriguez-Rivero, Jacob, Javier Ramirez, Francisco Jesús Martínez-Murcia, Fermín Segovia, Andrés ...
  • Rutskov, Alexey L., Viktor L. Burkovsky, and Evgeny V. Sidorenko. ...
  • Haupt, Sue Ellen, Mayte Garcia Casado, Michael Davidson, Jan Dobschinski, ...
  • نمایش کامل مراجع