Analyzing Behavioral Patterns of Bus Passengers Using Data Mining Methods (Case Study: Rapid Transportation Systems)

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 313

فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_APRIE-10-1_003

تاریخ نمایه سازی: 24 بهمن 1401

چکیده مقاله:

The aim of analyzing passengers' behavioral patterns is providing support for transportation management. In other words, to improve services like scheduling, evacuation policies, and marketing, it is essential to understand spatial and temporal patterns of passengers' trips. Smart Card Automated Fare Collection System (SCAFCS) makes it possible to utilize data mining tools for the purpose of passengers' behavioral pattern analysis. The specific goal of this research is to obtain functional information for passenger's behavioral pattern analysis in city express bus which is called BRT, and classification of passengers to improve performance of bus fast transportation system. Additionally, it is attempted to predict usage and traffic status in a line through predicting passenger's behavior in a bus line. In this paper, smart card data is applied to provide combinational algorithms for clustering and analysis based on data mining. To this end, we have used a combination of data mining methods and particle swarm optimisation algorithm and leveraged multivariate time series prediction to estimate behavioral patterns. Results show that price and compression ratio features are the most influencing features in the separability of transportation smart card data. According to obtained Pareto front, four features include a card identification number, bus identification number, bus line number, and charge times are influencing clustering criteria.

نویسندگان

Amir Daneshvar

Department of Information Technology Management, Faculty of Management, Electronic Branch, Islamic Azad University, Tehran, Iran.

Fariba Salahi

Department of Industrial Management, Faculty of Management, Electronic Branch, Islamic Azad University, Tehran, Iran.

Maryam Ebrahimi

Department of Information Technology Management, Faculty of Management, Electronic Branch, Islamic Azad University, Tehran, Iran.

Bijan Nahavandi

Department of Industrial Management, Faculty of Management and Economics, Science and Research Branch, Islamic Azad University, Tehran, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Soltani, A. (۲۰۱۲). Public transportation in response to a common ...
  • Agard, B., Partovi Nia, V., & Trépanier, M. (۲۰۱۳). Assessing ...
  • Dzikrullah, F., Setiawan, N. A., & Sulistyo, S. (۲۰۱۶). Implementation ...
  • Park, J. Y., Kim, D. J., & Lim, Y. (۲۰۰۸). ...
  • Trépanier, M., Tranchant, N., & Chapleau, R. (۲۰۰۷). Individual trip ...
  • Trépanier, M., & Vassiviere, F. (۲۰۰۸). Democratized smartcard data for ...
  • Ahn, J., & Han, R. (۲۰۱۳). Personalized behavior pattern recognition ...
  • Aliahmadi, A., Jafari-Eskandari, M., Mozafari, A., & Nozari, H. (۲۰۱۶). ...
  • Udoka, C. G. (۲۰۲۰). The impact of passenger's traffic on ...
  • Habibi, R. (۲۰۲۱). Poisson regression model with change points. Journal of ...
  • نمایش کامل مراجع