Predicting the Anticonvulsant Activities of Phenylacetanilides Using Quantitative-structure-activity-relationship and Artificial Neural Network Methods
سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 169
نسخه کامل این مقاله ارائه نشده است و در دسترس نمی باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_ANALCH-9-4_003
تاریخ نمایه سازی: 12 بهمن 1401
چکیده مقاله:
In this study, anticonvulsant activity of phenylacetanilides compounds was predicted using QSAR and artificial neural network (ANN) models. Variety kinds of molecular descriptors were computed using Dragon for ۳۰ monosubstituted phenylacetanilides. Then, seven out of ۱۶۰۰ descriptors were selected and used in ANN analysis. The complete set of ۳۰ compounds was randomly divided into a training set of ۸۰%, a test set of ۱۰%, and a validation set of ۱۰% compounds. Moreover, multiple linear regression (MLR) analysis was utilized to build a linear model by using the same descriptors and the results of this linear model were compared with the nonlinear ANN analysis. The obtained Correlation coefficient (R۲) and mean squared error (MSE) of the ANN and MLR models (for the whole dataset) were ۰.۸۵, ۰.۰۶۸۱۶; and ۰.۶, ۰.۰۹۷۹۲, respectively. The higher R۲ of ANN method revealed that the relationship between the descriptors and anticonvulsant activity of the compounds is non-linear.
کلیدواژه ها:
Predicting the Anticonvulsant Activities of Phenylacetanilides
نویسندگان
Javad Yousefi
Faculty of Chemistry, Semnan University, Semnan, Iran
S. Maryam Sajjadi
Faculty of Chemistry, Semnan University, Semnan, Iran
Ahmad Bagheri
Faculty of Chemistry, Semnan University, Semnan, Iran