Implementation of AI for The Prediction of Failures of Reinforced Concrete Frames

سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 243

فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJRRS-5-2_001

تاریخ نمایه سازی: 1 بهمن 1401

چکیده مقاله:

Reinforced concrete tall building failure, in residual areas, can cause catastrophic disaster if they can’t survive during the destructive earthquakes. Hence, determining the damage of these buildings in the earthquake and detecting the probable mechanism formation are necessary for insurance purposes in urban areas. This paper aims to determine the failure modes of the moment resisting concrete frames (MRFs) according to the damage of the beam and column.  To achieve this goal, a ۱۵-storey moment resisting reinforced concrete frame is modeled via IDARC software, and nonlinear dynamic time history analysis is performed through ۶۰ seismic accelerograms. Then the collapse and non-collapse vectors are constructed obtaining the results of dynamic analysis in both modes. The artificial neural network is used for the classification of the obtained modes. The results show good agreement in failures classes. Hence it is possible to introduce the simple weight factor for frame status identification.

نویسندگان

sasan motaghed

Department of Civil Engineering, Faculty of Engineering, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran

mohammad sadegh Shahid zadeh

Department of Civil Engineering, Faculty of Engineering, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran

ali khooshecharkh

Department of Civil Engineering, Faculty of Engineering, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran

mehdi Askari

Department of Civil Engineering, Faculty of Engineering, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • B.J. Alsulayfani, and T.E. Saaed, “Effect of Dynamic Analysis and ...
  • American Concrete Institute (ACI)). “Building code requirements for structural concrete ...
  • A. Adedeji and S.P. Ige, “Comparative Study of Seismic Analysis ...
  • D. CFeng, Z. T. Liu, X. D. Wang, Z. M. ...
  • M. A. H. Mirdad, Y. H. Chui, and D. Tomlinson, ...
  • S. Motaghed, andA. R. Fakhriyat, “Modeling inelastic behavior of RC ...
  • E. B. Tirkolaee, I. Mahdavi, M. M. S.Esfahani, and G. ...
  • C. B. Haselton, A. B. Liel, G. G. Deierlein, B. ...
  • C. A. Goulet, C. B. Haselton, J. MitraniReiser, J. L. ...
  • H. Q. Nguyen, H. B. Ly, V. Q. Tran, T. ...
  • A. De Stefano, D. Sabia and L. Sabia, “Probabilistic neural ...
  • SA. Allali, M. Abed and A. Mebarki, “Post-earthquake assessment of ...
  • P.F. Alvanitopoulos, I. Andreadis and A. Elenas, “Neuro-fuzzy techniques for ...
  • M.L. Carren˜o, O.D. Cardona and A.H. Barbat, “Computational tool for ...
  • K. Demartinos and S. Dritsos, “First-level pre-earthquake assessment of buildings ...
  • E. Elwood and R.B. Corotis, “Application of fuzzy pattern recognition ...
  • Silva MS and Garcia L, “Earthquake damage assessment based on ...
  • S. Mangalathu and H.V. Burton, “Deep learning-based classification of earthquake-impacted ...
  • S. German, I, Brilakis and R. Desroches, “Rapid entropy-based detection ...
  • S. German, J-S. Jeon, Z. Zhu, C. Bearman, I. Brilakis, ...
  • S.G. Paal, J-S. Jeon, I. Brilakis and R. Des Roches, ...
  • L.Gong, C. Wang, F. Wu, J. Zhang, H. Zhang and ...
  • M.Peyk-Herfeh and A. Shahbahrami, “Evaluation of adaptive boosting and neural ...
  • Y. Gao and K.M. Mosalam, “Deep transfer learning for image-based ...
  • C.S. Huang, S.L. Hung, C.M. Wen and T.T. Tu, “A ...
  • M.Nakamura, S.F. Masri, A.G. Chassiakos and T.K. Cau Ghey, “A ...
  • R.O. De Lautour and P. Omenzetter, “Damage classification and estimation ...
  • M.P. Gonza´lez and J.L. Zapico, “Seismic damage identification in buildings ...
  • X. Jiang and H. Adeli, “Pseudospectra, MUSIC, and dynamic wavelet ...
  • X.Jiang and H. Adeli, “Dynamic fuzzy wavelet neuroemulator for non-linear ...
  • X. Jiang and H. Adeli, “Neuro-genetic algorithm for non-linear active ...
  • X.Jiang and S. Mahadevan, “Bayesian probabilistic inference for nonparametric damage ...
  • Z. Wu, B. Xu and K. Yokoyama, “Decentralized parametric damage ...
  • Xu B, Wu Z, Yokoyama K, Harada T and Chen ...
  • G.L. Molas and F. Yamazaki, “Neural networks for quick earthquake ...
  • T. Aoki, R. Ceravolo, A. De Stefano, C. Genovese and ...
  • R.O. De Lautour and P. Omenzetter, “Damage classification and estimation ...
  • K. Morfidis and K. Kostinakis, “Seismic parameters’ combinations for the ...
  • K. Morfidis and K. Kostinakis, “Approaches to the rapid seismic ...
  • M.Vafaei, A.B. Adnan and A.B.A. Rahman, “Real-time seismic damage detection ...
  • M.Vafaei, A.B. Adnan and A.B.A. Rahman, “Aneuro-wavelet technique for seismic ...
  • A. Kia and S. Sensoy, “Classification of earthquake-induced damage for ...
  • H.V. Burton, S. Sreekumar, M. Sharma and H. Sun, “Estimating ...
  • Y. Zhang and H.V. Burton, “Pattern recognition approach to assess ...
  • Y. Zhang, H.V. Burton, H. Sun and M. Shokrabadi, “A ...
  • Shahidzadeh M.S., A. Amani and S. Motaghed, ۲۰۱۱, “FRP-Steel Relation ...
  • A.M. Reinhorn, S.K. Kunnath and R. Valles-Mattox, “IDARC ۲D version ...
  • M.A. Alamand M.Z. Jumaat, “Eliminating Premature End Peeling of Flexurally ...
  • A.T. Gilmore, J.O. Jirsa, “the concept of cumulative ductility strength ...
  • O. E. Kafrawy and A. Bagchi, “Computer Aided Design and ...
  • S. Chatterjee, S. Sarkar, S. Hore, N. Dey, A.S. Ashour ...
  • J. Zou, Y. Han, andS.S. So, “Overview of artificial neural ...
  • نمایش کامل مراجع