AN IMPROVED CONTROLLED CHAOTIC NEURAL NETWORK FOR PATTERN RECOGNITION

سال انتشار: 1393
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 168

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJMAC-4-3_006

تاریخ نمایه سازی: 28 دی 1401

چکیده مقاله:

A sigmoid function is necessary for creation a chaotic neural network (CNN). In this paper, a new function for CNN is proposed that it can increase the speed of convergence. In the proposed method, we use a novel signal for controlling chaos. Both the theory analysis and computer simulation results show that the performance of CNN can be improved remarkably by using our method. By means of this control method, the outputs of the controlled CNN converge to the stored patterns and they are dependent on the initial patterns. We observed that the controlled CNN can distinguish two initial patterns even if they are slightly different. These characteristics imply that the controlled CNN can be used for pattern recognition.

نویسندگان

Maryam Nahvi Farsi

Iran, Islamic Republic of

Majid Amirfakhrian

Iran, Islamic Republic of