ارزیابی مدل شبکه عصبی مصنوعی در تعیین پراکندگی مکانی کنه های خانواده Ascidae (Acari: Mesostigmata) در سطح شهرستان دامغان استان سمنان
محل انتشار: نامه انجمن حشره شناسی ایران، دوره: 37، شماره: 3
سال انتشار: 1396
نوع سند: مقاله ژورنالی
زبان: فارسی
مشاهده: 155
فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JESI-37-3_006
تاریخ نمایه سازی: 20 دی 1401
چکیده مقاله:
پژوهش حاضر با هدف پیشبینی پراکندگی کنه های خانواده Ascidae با استفاده از شبکه عصبی مصنوعی در شهرستان دامغان استان سمنان انجام شد. بدین منظور مختصات طول و عرض جغرافیایی و ارتفاع از سطح دریا در ۱۳۷ نقطه به صورت تصادفی، در سطح شهرستان مشخص و به عنوان ورودیهای شبکه عصبی مصنوعی تعریف شد. خروجی نیز تعداد اعضای این خانواده در نقاط مذکور بود. در این پژوهش از شبکه عصبی مصنوعی با ساختار پرسپترون سه لایه با الگوریتم پس انتشار خطا، استفاده شد. برای ارزیابی قابلیت شبکه های عصبی مورد استفاده در پیشبینی پراکندگی از مقایسه آماری پارامترهایی مانند واریانس، توزیع آماری و میانگین بین مقادیر پیش بینی شده مکانی توسط شبکه عصبی و مقادیر واقعی آن ها استفاده شد. نتایج نشان داد که در فازهای آموزش و آزمایش بین مقادیر ویژگی های آماری واریانس، توزیع آماری و میانگین مجموعه داده های واقعی و پیش بینی شده مکانی این خانواده توسط شبکه عصبی، تفاوت معنی داری در سطح ۹۵ درصد وجود نداشت (p> ۰.۴). در مجموع میتوان چنین نتیجه گرفت که روش شبکه عصبی مصنوعی با تلفیق سه عامل طول و عرض جغرافیایی و ارتفاع از سطح دریا، قادر به پیشبینی پراکندگی این خانواده با دقت مناسب بود.
کلیدواژه ها:
نویسندگان
مسعود حکیمی تبار
دانشگاه صنعتی شاهرود
علیرضا شعبانی نژاد
گروه گیاه پزشکی، دانشکده کشاورزی، دانشگاه رازی، کرمانشاه، ایران
علیرضا صبوری
گروه گیاه پزشکی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران
محمدحسن شمس
گروه گیاه پزشکی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :