An MLP-based Deep Learning Approach for Detecting DDoS Attacks

سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: فارسی
مشاهده: 216

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_TJEE-52-3_006

تاریخ نمایه سازی: 17 دی 1401

چکیده مقاله:

Distributed Denial of Service (DDoS) attacks are among the primary concerns in internet security today. Machine learning can be exploited to detect such attacks. In this paper, a multi-layer perceptron model is proposed and implemented using deep machine learning to distinguish between malicious and normal traffic based on their behavioral patterns. The proposed model is trained and tested using the CICDDoS۲۰۱۹ dataset. To remove irrelevant and redundant data from the dataset and increase learning accuracy, feature selection is used to select and extract the most effective features that allow us to detect these attacks. Moreover, we use the grid search algorithm to acquire optimum values of the model’s hyperparameters among the parameters’ space. In addition, the sensitivity of accuracy of the model to variations of an input parameter is analyzed. Finally, the effectiveness of the presented model is validated in comparison with some state-of-the-art works.

کلیدواژه ها:

نویسندگان

مجتبی واسو جویباری

Department of Computer Science, University of Sistan and Baluchestan, Zahedan, Iran

احسان عطائی

Department of Computer Engineering, University of Mazandaran, Babolsar, Iran

مصطفی بستام

Department of Computer Engineering, University of Mazandaran, Babolsar, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Ghasabi, M. Deypir, "Detection and mitigation of DDOS attacks in ...
  • IoT connected devices worldwide ۲۰۱۹-۲۰۳۰. In: Statista. https://www.statista.com/statistics/۱۱۸۳۴۵۷/iot-connected-devices-worldwide/. Accessed ۱۵ ...
  • Sharafaldin, A.H. Lashkari, S. Hakak, A.A. Ghorbani, "Developing realistic distributed ...
  • Z. Bawany, J.A. Shamsi, K. Salah, "DDoS attack detection and ...
  • THESSLSTORE | The Largest DDoS Attacks in history. In: Hashed ...
  • B. Dehkordi, M. Soltanaghaei, F.Z. Boroujeni, "The DDoS attacks detection ...
  • Behal, K. Kumar, "Detection of DDoS attacks and flash events ...
  • Wang, "Analyses on limitations of information theory", In: ۲۰۰۹ International ...
  • Yuan, C. Li, X. Li, "DeepDefense: identifying DDoS attack via ...
  • Doriguzzi-Corin, S. Millar, S. Scott-Hayward, "LUCID: A Practical, Lightweight Deep ...
  • Manavi, A. Hamzeh, "An Efficient Approach for Unknown Malware Detection ...
  • Wang, Y. Lu, J. Qin, "A dynamic MLP-based DDoS attack ...
  • Shah, B.H. Trivedi, "Artificial neural network based intrusion detection system: ...
  • Pradeepa, M. Pushpalatha, "IPR: Intelligent Proactive Routing model toward DDoS ...
  • Saied, R.E. Overill, T. Radzik, "Detection of known and unknown ...
  • Sumathi, N. Karthikeyan, "Detection of distributed denial of service using ...
  • Niyaz, W. Sun, A.Y. Javaid, "A deep learning based DDoS ...
  • M.A. Ujjan, Z. Pervez, K. Dahal, "Towards sFlow and adaptive ...
  • Johnson Singh, K. Thongam, T. De, "Entropy-based application layer DDoS ...
  • He, T. Zhang, R.B. Lee, "Machine learning based DDoS attack ...
  • R. Sanchez, M. Repello, " Evaluating ML-based DDoS Detection with ...
  • K. Batchu, H. Seetha, "A generalized machine learning model for ...
  • Ismail, H. Hussain, A.A. Khan, U. Ullah, "A Machine Learning-Based ...
  • Mihoub, O.B. Fredj, O. Cheikhrouhou, " Denial of service attack ...
  • Alidoosti, A. Nowroozi, A. Nickabadi, "Assessing of Web Application Resiliency ...
  • B. Gaikwad, V. Tiwari, A. Keskar, N.C. Shivaprakash, "Efficient FPGA ...
  • S. Das, P. Roy, "A deep dive into deep learning ...
  • Atefinia, M. Ahmadi, "Network intrusion detection using multi-architectural modular deep ...
  • Ramírez-Gallego, B. Krawczyk, S. García, "A survey on data preprocessing ...
  • Bergstra, Y. Bengio, "Random search for hyper-parameter optimization", Journal of ...
  • A. Fayed, A.F. Atiya, "Speed up grid-search for parameter selection ...
  • S. Elsayed, N.A. Le-Khac, S. Dev, A.D. Jurcut, "Ddosnet: A ...
  • Ferri, P. Flach, J. Hernández-Orallo, "Learning decision trees using the ...
  • H. Park, J.M. Goo, C.H. Jo, "Receiver operating characteristic (ROC) ...
  • Abadi, P. Barham, J. Chen, "Tensorflow: A system for large-scale ...
  • Keras: the Python deep learning API. https://keras.io/. Accessed ۱۳ Nov ...
  • R. Harris, K.J. Millman, S.J. Walt, "Array programming with NumPy", ...
  • Pedregosa, G. Varoquaux, A. Gramfort, "Scikit-learn: Machine learning in Python", ...
  • Géron, "Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts, ...
  • ۱۹۹۸ DARPA Intrusion Detection Evaluation Dataset | MIT Lincoln Laboratory. ...
  • McHugh, "Testing intrusion detection systems: a critique of the ۱۹۹۸ ...
  • KDD Cup ۱۹۹۹ Data. http://kdd.ics.uci.edu/databases/kddcup۹۹/kddcup۹۹.html. Accessed ۱۵ Nov ۲۰۲۱ ...
  • (۲۰۱۰) The CAIDA “DDoS Attack ۲۰۰۷” Dataset. In: CAIDA. https://www.caida.org/catalog/datasets/ddos-۲۰۰۷۰۸۰۴_dataset/. ...
  • (۲۰۱۹) The CAIDA Anonymized Internet Traces Data Access. In: CAIDA. ...
  • Tavallaee, E. Bagheri, W. Lu, A.A. Ghorbani, "A detailed analysis ...
  • Shiravi, H. Shiravi, M. Tavallaee, A.A. Ghorbani, "Toward developing a ...
  • Sharafaldin, A.H. Lashkari, A.A. Ghorbani, "Toward generating a new intrusion ...
  • Applications | Research | Canadian Institute for Cybersecurity | UNB. ...
  • DDoS ۲۰۱۹ | Datasets | Research | Canadian Institute for ...
  • نمایش کامل مراجع