Evaluating earthquake vulnerability with the help of fuzzy logic and GIS (Case study: Tehran, District 16)
سال انتشار: 1390
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,357
فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
SASTECH05_068
تاریخ نمایه سازی: 22 مرداد 1391
چکیده مقاله:
Earthquake as a natural disaster can damage the lives of numerous people all over the world every year. It can also impose huge economical burden on societies. Even though earthquake may be unpredictable, proper planning can significantly reduce the damages. A viable remedy is to identify the vulnerable regions and equip them such that it reduces the casualties. Fuzzy logic is a theory for an action in uncertain conditions; in particular, it deals with human language and thinking. It is an indication to what degree something belongs to a class. This theory is able to form mathematical view to many concepts and systems that are inaccurate and vague. It also provides a suitable framework for reasoning, deduction and decision making in fuzzy conditions. Nowadays fuzzy systems have been widely used in different fields of science because of its simplicity and efficiency. In this paper, with the use of fuzzy logics, we examine the rate of damage in the sixteenth district of Tehran. For this reason, two reasoning engine namely Sugeno and Mamdani, have been used. The used data are: distance to faults, main roads, support centers, clinics, fire stations, gas stations, timeworn areas and population. The analysis performed in MATLAB fuzzy toolbox and ArcGIS software. Final results of Sugeno and Mamdani reasoning engine were similar and showed that southern parts of this district are more exposed to danger
کلیدواژه ها:
نویسندگان
Parastoo Pileforooshha
Graduate student
Ali A. Alesheikh
Associate ProfessorK.N. Toosi University of Technology
Farzaneh Mousavi
Graduate student
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :