Cardiac Arrhythmia Diagnosis with an Intelligent Algorithm using Chaos Features of Electrocardiogram Signal and Compound Classifier

سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 303

فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JADM-10-4_006

تاریخ نمایه سازی: 28 آذر 1401

چکیده مقاله:

Cardiac Arrhythmias are known as one of the most dangerous cardiac diseases. Applying intelligent algorithms in this area, leads into the reduction of the ECG signal processing time by the physician as well as reducing the probable mistakes caused by fatigue of the specialist. The purpose of this study is to introduce an intelligent algorithm for the separation of three cardiac arrhythmias by using chaos features of ECG signal and combining three types of the most common classifiers in these signal’s processing area. First, ECG signals related to three cardiac arrhythmias of Atrial Fibrillation, Ventricular Tachycardia and Post Supra Ventricular Tachycardia along with the normal cardiac signal from the arrhythmia database of MIT-BIH were gathered. Then, chaos features describing non-linear dynamic of ECG signal were extracted by calculating the Lyapunov exponent values and signal’s fractal dimension. finally, the compound classifier was used by combining of multilayer perceptron neural network, support vector machine network and K-Nearest Neighbor. Obtained results were compared to the classifying method based on features of time-domain and time-frequency domain, as a proof for the efficacy of the chaos features of the ECG signal. Likewise, to evaluate the efficacy of the compound classifier, each network was used both as separately and also as combined and the results were compared. The obtained results showed that Using the chaos features of ECG signal and the compound classifier, can classify cardiac arrhythmias with ۹۹.۱% ± ۰.۲ accuracy and ۹۹.۶% ± ۰.۱ sensitivity and specificity rate of ۹۹.۳ % ± ۰.۱

کلیدواژه ها:

Lyapunov Exponent ، Fractal Dimension ، Multi Layer Perceptron Neural Network ، Support Vector Machine ، Electrocardiogram

نویسندگان

E. Zarei

Department of Electrical Engineering,Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran. Iran.

N. Barimani

Department of Electrical Engineering,Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran. Iran

G. Nazari Golpayegani

Department of Electrical Engineering,Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran. Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • S. Srivasta, and H. Bhardwaj, “ECG Pattern Analysis using Artificial ...
  • G. Yao, and X. Mao, “Interpretation of Electrocardiogram Heartbeat by ...
  • O. Berenfeld, and J. F. Rodriguez Matas, “Editorial: Atrial Filrillation: ...
  • W. Schleifer, and K. Sirvathsan, “Ventricular Arrhythmias State of Art,” ...
  • N. V. Goonewardane, and Ang S. Kottegoda, “SupperVentricular Tachycardia,” Journal ...
  • B. Anuragha, and K. Suresh Kumar, “Classification of cardiac signals ...
  • J. Cai, and G. Zhou, “Real-Time Arrhythmia Classification Algorithm using ...
  • H. Gothwal, and S. Kedawat, “Cardiac arrhythmia detection in an ...
  • C. H. Lin, “Frequency–domain features for ECG discrimination using gray ...
  • S. Z. Mahmoodabadi, and A. Ahmadian, “ECG feature extraction using ...
  • Q. Zhao, and L. Zhan, “ECG feature extraction and classification ...
  • B. A. Sabrine, and A. Taoufik, “Arrhythmia Classification Using Fractal ...
  • K. Kiani, and F. Maghsoudi, “Classification of ۷ Arrhythmias from ...
  • A. Casaleggio, and A. Corana, “Study of the Lyapunov exponents ...
  • O. Gorshkov, and H. Ombao, “Multi-chaotic Analysis of Inter-Beat (R-R) ...
  • R. Esteller, and G. Vachtsevanos, “A comparison of waveform fractal ...
  • G. Jaiswal, and R. Paul, “Artificial neural network for ECG ...
  • J. Fornari, and J. Pelaze, “Bundle Branch Blocks Classification via ...
  • A. Ebrahimzadeh, and M. Safarnehad, “Classification of ECG signals using ...
  • A. Sahedin, Ah. Zakernejad, S. Faridi, M. Javadi, and R. ...
  • M. Engin, and S. Demirag, “Fuzzy-hybrid neural network based ECG ...
  • A. karen, and E. andres, “Classification models for heart disease ...
  • R. M. Revadas, “Cardiac Arrhythmia Classification using SVM, KNN and ...
  • V. R. Elgin Christo, H. Khanna Nehemiah, B. Minu, and ...
  • N. Kohli, and N. K. Verma, “Arrhythmia classification using SVM ...
  • L. I. Kuncheva, and J. C. Bezdek, “Decision Templates for ...
  • G. B. Moody, and R. G. Mark, “The impact of ...
  • MIT-BIH Arrhythmia PhysioNet, Available: https://www.physionet.org/physiobank/database ...
  • H. D. Abarbanel, and R. Brown, “Lyapunov exponents in chaotic ...
  • J. P. Eckmann, and S. O. Kamphorst, “Lyapunov exponents from ...
  • M. Sano, and Y. Sawada, “Measurement of the Lyapunov spectrum ...
  • YS. Hung, and CY Suen, “The behavior – knowledge Space ...
  • I. Kaur, R. Rajini, and A. Marwaha, “ECG Signal Analysis ...
  • J. Pan, and W. J. Tompkins, “A real time QRS ...
  • نمایش کامل مراجع