Efficient binary grasshopper optimization based neural network algorithm for bitcoin value prediction

سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 163

فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJNAA-13-0_005

تاریخ نمایه سازی: 11 آذر 1401

چکیده مقاله:

Digital currency plays a vital role in the process of trading as it helps the sellers and buyers to earn more profit. In today’s world, many categories of cryptocurrencies exist and each one of them employs its own security algorithms. Bitcoin price prediction is a complex problem that needs advanced algorithms to solve exactly. In this paper, swarm-based intelligence algorithms are applied in order to solve the bitcoin value prediction problem. In particular, Ant Colony Optimization and Binary Grasshopper Optimization algorithms are combined as a hybrid framework to select the most critical features in the dataset for bitcoin value prediction. The extracted features from the hybrid model are given as input to the convolutional neural network to predict the price of the bitcoins. As per the experimental results, the proposed hybrid algorithm produces better results when compared with the stand-alone version of grasshopper and neural network algorithms.

نویسندگان

A. Saran Kumar

Department of CSE, Bannari Amman Institute of Technology, Erode, Tamilnadu, India

S. Priyanka

Department of CSE, Bannari Amman Institute of Technology, Erode, Tamilnadu, India

K. Dhanashree

Department of CSE, Sri Ramakrishna Engineering College, Coimbatore, Tamilnadu, India

V. Praveen

Department of CSE, Bannari Amman Institute of Technology, Erode, Tamilnadu, India

R. Rekha

Department of IT, PSG College of Technology, Coimbatore, Tamilnadu, India