Efficient binary grasshopper optimization based neural network algorithm for bitcoin value prediction
سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 163
فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJNAA-13-0_005
تاریخ نمایه سازی: 11 آذر 1401
چکیده مقاله:
Digital currency plays a vital role in the process of trading as it helps the sellers and buyers to earn more profit. In today’s world, many categories of cryptocurrencies exist and each one of them employs its own security algorithms. Bitcoin price prediction is a complex problem that needs advanced algorithms to solve exactly. In this paper, swarm-based intelligence algorithms are applied in order to solve the bitcoin value prediction problem. In particular, Ant Colony Optimization and Binary Grasshopper Optimization algorithms are combined as a hybrid framework to select the most critical features in the dataset for bitcoin value prediction. The extracted features from the hybrid model are given as input to the convolutional neural network to predict the price of the bitcoins. As per the experimental results, the proposed hybrid algorithm produces better results when compared with the stand-alone version of grasshopper and neural network algorithms.
کلیدواژه ها:
نویسندگان
A. Saran Kumar
Department of CSE, Bannari Amman Institute of Technology, Erode, Tamilnadu, India
S. Priyanka
Department of CSE, Bannari Amman Institute of Technology, Erode, Tamilnadu, India
K. Dhanashree
Department of CSE, Sri Ramakrishna Engineering College, Coimbatore, Tamilnadu, India
V. Praveen
Department of CSE, Bannari Amman Institute of Technology, Erode, Tamilnadu, India
R. Rekha
Department of IT, PSG College of Technology, Coimbatore, Tamilnadu, India