Implementation of Intrusion detection and prevention with Deep Learning in Cloud Computing
سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 251
فایل این مقاله در 18 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JITM-15-5_001
تاریخ نمایه سازی: 1 آبان 1401
چکیده مقاله:
An administrator is employed to identify network security breaches in their organizations by using a Network Intrusion Detection and Prevention System (NIDPS), which is presented in this paper that can detect and preventing a wide range of well-known network attacks. It is now more important than ever to recognize different cyber-attacks and network abnormalities that build an effective intrusion detection system plays a crucial role in today's security. NSL-KDD benchmark data set is extensively used in literature, although it was created over a decade ago and will not reflect current network traffic and low-footprint attacks. Canadian Institute of Cyber security introduced a new data set, the CICIDS۲۰۱۷ network data set, which solved the NSL-KDD problem. With our approach, we can apply a variety of machine learning techniques like linear regression, Random Forest and ID۳. The efficient IDPS is indeed implemented and tested in a network environment utilizing several machine learning methods. A model that simulates an IDS-IPS system by predicting whether a stream of network data is malicious or benign is our objective. An Enhanced ID۳ is proposed in this study to identify abnormalities in network activity and classify them. For benchmark purposes, we also develop an auto encoder network, PCA, and K-Means Clustering. On CICIDS۲۰۱۷, a standard dataset for network intrusion, we apply Self-Taught Learning (STL), which is a deep learning approach. To compare, we looked at things like memory, Recall, Accuracy, and Precision.
کلیدواژه ها:
IDPS (Intrusion Detection and Prevention System) ، Network Security
نویسندگان
Srilatha
School of Computing and Information Technology, REVA University, Bengaluru, India-۵۶۰۰۶۴; Department of CSE, Sreenidhi Institute of Science and Technology, Hyderabad, India-۵۰۱۳۰۱.
Thillaiarasu
School of Computing and Information Technology, REVA University, Bengaluru, India-۵۶۰۰۶۴.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :