A Deep Neural Network for Classification of Land Use Satellite Datasets in Mining Environments

سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 190

فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JMAE-13-3_011

تاریخ نمایه سازی: 27 مهر 1401

چکیده مقاله:

Land use (LU) is one of the most imperative pieces of cartographic information used for monitoring the mining environment. The extraction of land use data sets from remotely sensed satellite images has garnered significant interest in the mining region community. However, classification of LUs from satellite images remains a tedious task due to the lack of availability of efficient coal mining related datasets. Deep learning methods provide great leverage to extract meaningful information from high-resolution satellite images. Moreover, the performance of a deep learning classification approach significantly depends on the quality of the datasets. The present work attempts to demonstrate the generation of satellite-based datasets for the performance analysis of different deep neural network (DNN)-based learning algorithms in the LU classifications of mining regions. The mining regions are broadly classified into distinct regions based on visual inspection, namely barren land, built-up areas, waterbody, vegetation, and active coal mines. In our experimental work, a patch of ۱۰۰ spatial samples for each of the five features is generated on three scales, as [۱ × ۱ × ۳], [۵ × ۵ × ۳], and [۱۰ × ۱۰ × ۳]. Moreover, the effects of different scalabilities of the dataset on classification performances are also analyzed. Furthermore, this case study is implemented for the large-scale benchmark of satellite image datasets for mining regions. In the future, this work can be used to classify LU in the relevant study regions in real time.

کلیدواژه ها:

نویسندگان

Ajay Kumar

School of Computer Science and Information Technology, Manipal University Jaipur, Jaipur, Rajasthan, India

Aditya Gupta

School of Computer Science and Information Technology, Manipal University Jaipur, Jaipur, Rajasthan, India

Yadvendra Singh

School of Computer Science and Information Technology, Manipal University Jaipur, Jaipur, Rajasthan, India

Monu Bhagat

School of Computer Science and Information Technology, Manipal University Jaipur, Jaipur, Rajasthan, India

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Balha, A., Mallick, J., Pandey, S., Gupta, S., and Singh, ...
  • Battiti, R. (۱۹۹۲). First-and second-order methods for learning: between steepest ...
  • Bottou, L. (۲۰۰۳). Stochastic learning. In Summer School on Machine ...
  • Castelluccio, M., Poggi, G., Sansone, C., and Verdoliva, L. (۲۰۱۵). ...
  • Gill, P.E., Murray, W., and Wright, M.H. (۲۰۱۹). Practical optimization. ...
  • Hagan, M.T., and Menhaj, M.B. (۱۹۹۴). Training feedforward networks with ...
  • Hay, G. J., and Castilla, G. (۲۰۰۸). Geographic Object-Based Image ...
  • Jin, C., Netrapalli, P., and Jordan, M.I. (۲۰۱۸). Accelerated gradient ...
  • Johnson, R.A., and Wichern, D.W. (۲۰۲۰). Applied multivariate statistical analysis ...
  • Kumar, A., and Gorai, A.K. (۲۰۲۲). Application of transfer learning ...
  • Laban, N., Abdellatif, B., Ebied, H. M., Shedeed, H.A., and ...
  • Labat, C., and Idier, J. (۲۰۰۶). Preconditioned conjugate gradient without ...
  • Lee, H., and Kwon, H. (۲۰۱۶). Contextual deep CNN based ...
  • Lemaréchal, C. (۲۰۱۲). Cauchy and the gradient method. Doc Math ...
  • MacKay, D.J. (۱۹۹۲). Bayesian interpolation. Neural computation, ۴(۳): ۴۱۵-۴۴۷ ...
  • Møller, M.F. (۱۹۹۰). A scaled conjugate gradient algorithm for fast ...
  • Pesaresi, M., Huadong, G., Blaes, X., Ehrlich, D., Ferri, S., ...
  • Powell, M.J.D. (۱۹۷۷). Restart procedures for the conjugate gradient method. ...
  • Qu, L. A., Chen, Z., Li, M., Zhi, J., and ...
  • Riedmiller, M., and Braun, H. (۱۹۹۳). A direct adaptive method ...
  • Simon, C., and De Vleeschouwer, C. (۲۰۲۱). Intraclass clustering: an ...
  • Trujillo-Jiménez, M.A., Liberoff, A.L., Pessacg, N., Pacheco, C., Díaz, L., ...
  • Verma, D., and Jana, A. (۲۰۱۹). LULC classification methodology based ...
  • Xia, G. S., Hu, J., Hu, F., Shi, B., Bai, ...
  • Xia, G.S., Yang, W., Delon, J., Gousseau, Y., Sun, H., ...
  • Zhang, C., Sargent, I., Pan, X., Li, H., Gardiner, A., ...
  • نمایش کامل مراجع