Prediction of drilling rate using artificial neural networks in oil field
سال انتشار: 1401
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 228
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
EMGBC06_022
تاریخ نمایه سازی: 20 مهر 1401
چکیده مقاله:
Today, cost and time are very important, Drilling industry is also one of the most expensive industries, so it is necessary to save time and cost of Drilling and also consider solutions for it. In Drilling operations, by choosing the right tools used and also accurate and timely forecasting of parameters and possible problems, this operation can be performed in less time and cost. In this study, for estimating the accuracy and efficiency of predictive models of penetration rate, coefficient of determination (R۲) and Root Mean Square Error (RMSE) have been used. The database was then analyzed through Artificial Neural Network (ANN) to generate an optimum predictive model. Results showed that there is a close relation between actual (measured) data and predicted data with R۲=۰.۹۸ and RMSE=۰.۰۲
کلیدواژه ها:
نویسندگان
Gheys Habibi mahali
Department of Mining and Geology, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
Alireza Afradi
Department of Mining and Geology, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
Mohammad Raei Abbas Abadi
Department of Mining Engineering,Savadkooh Branch, Islamic Azad University, Savadkooh, Iran