ارائه یک روش جدید برای آموزش بهینه مدل پنهان مارکف
محل انتشار: یازدهمین کنفرانس مهندسی برق
سال انتشار: 1382
نوع سند: مقاله کنفرانسی
زبان: فارسی
مشاهده: 1,122
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICEE11_019
تاریخ نمایه سازی: 18 تیر 1391
چکیده مقاله:
یکی از ابزارهای بسیار قدرتمند در پردازش فرآیندها ی اتفاقی و دنباله های تصادفی مدل پنهان مارکف یاHMM میباشد . مشهورترین روش آموزشمدل پنهان مارکف روش با م -ولشBW است که یک روش آموزش (جستجوی) محلی بوده و در دام بهینه های محلی گرفتار می آید . در این تحقیق ازروشهای جستجوی سراسری مبتنی بر سرد کردن فلزاتSA استفاده کردیم . همچنین یک روشSA حافظه دار و کاملاً جدید بنام MiPSA نیز ارائه داده ایم که دارای راندمان بالاتری نسبت بهSA های بدون حافظه است . آزمایشها نشان داد که کارآیی متوسط الگوریتم BW بیش از کارایی متوسط روشهای سراسری در تعداد تکرارهای نه خیلی زیاد ( 10000 تکرار ) است و این به دلیل قدرت بالای روشBW در تنظیم دقیق پارامترها، سرعت آن و پایه ریاضی مستحکم آن می باشد . برای رسیدن به بهینه سراسری در تعداد تکرارهای نه خیلی زیاد از روشهای ترکیبی 4 استفاده کردیم که هم از روش جستجوی سراسری مبتنی برSAو هم از روش جس تجوی محلیBW بهره می گیرد و دارای راندمان بالاتری نسبت به روشBW به تنهایی است . به نظر می رسد که با استفاده از روش بهینه سازی و جستجوی ترکیبی توانسته ایم به بهینه سراسری و آموزش بهینه مدل پنهان مارکفنزدیک شویم.
نویسندگان
جهانشاه کبودیان
آزمایشگاه سیستمهای هوشمند صوتی-گفتاری،
محمدرضا میبدی
آزمایشگاه محاسبات نرم،دانشکده مهندسی کامپیوتر و فناوری اطلاعات، دا
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :