Forecasting Tehran Price Index (TEPIX) Using Novel Meta-Heuristic Algorithms
سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 215
فایل این مقاله در 32 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJFMA-8-28_014
تاریخ نمایه سازی: 20 شهریور 1401
چکیده مقاله:
The stock market involves risks and returns that, if forecasted correctly, can lead to profitability, and for this forecasting, appropriate methods are needed. It is affected by various parameters and needs a way to identify these parameters well and have a dynamic nature. The main goal of this article is forecasting Tehran Price Index (TEPIX) by using hybrid Artificial Neural Network (ANN) based on Genetic Algorithm (GA), Harmony Search (HS) particle Swarm Optimization algorithm (PSO) Moth Flame Optimization (MFO) and Whale Optimization algorithms. GA is used as feature selection. So, PSO, HS MFO and WOA are used to determine the number of input and hidden layers. We use the daily values of the stock price index of the Tehran Stock Exchange from ۲۰۱۳ to ۲۰۱۸ in order to forecasting price and test it. The accuracy of ANN, hybrid Artificial Neural Network with HS, PSO MFO and WOA is evaluated based on different loss functions such as MSE, MAE and etc. the results show that the predictability of Meta-heuristic algorithms in testing period is higher than normal ANN. Also, the predictability of hybrid WOA is higher than hybrid PSO and HS algorithms and MFO.
کلیدواژه ها:
Whale Optimization Algorithm ، Genetic algorithm ، Harmony Search ، Particle Swarm Optimization Algorithm ، Moth Flame Optimization Algorithm
نویسندگان
milad Shahvaroughi Farahani
Department of Finance, Faculty of Management, Khatam University, Tehran, Iran.
Mohammadreza Nejad Falatouri Moghaddam
Ph.d Candidate, Department of Financial Management, Faculty of Management and
Ali Ramezani
Ph.d Candidate, Department of Financial Management, Faculty of Management and Economics, Science and Research Branch, Islamic Azad University, Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :