Comparing the Performance of Pre-trained Deep Learning Models in Object Detection and Recognition

سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 262

فایل این مقاله در 17 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JITM-14-4_004

تاریخ نمایه سازی: 22 تیر 1401

چکیده مقاله:

The aim of this study is to evaluate the performance of the pre-trained models and compare them with the probability percentage of prediction in terms of execution time. This study uses the COCO dataset to evaluate both pre-trained image recognition and object detection, models. The results revealed that Tiny-YoloV۳ is considered the best method for real-time applications as it takes less time. Whereas ResNet ۵۰ is required for those applications which require a high probability percentage of prediction, such as medical image classification. In general, the rate of probability varies from ۷۵% to ۹۰% for the large objects in ResNet ۵۰. Whereas in Tiny-YoloV۳, the rate varies from ۳۵% to ۸۰% for large objects, besides it extracts more objects, so the rise of execution time is sensible. Whereas small size and high percentage probability makes SqueezeNet suitable for portable applications, while reusing features makes DenseNet suitable for applications for object identification.

نویسندگان

Obaid

Department of Computer Science, College of Education, AL-Iraqia University, Baghdad, Iraq.

Mohammed

Ph.D., College of Computer Science and Information Technology, University of Anbar, Ramadi, ۳۱۰۰۱, Iraq

Salman

Electrical Engineering Technical College, Middle Technical University, Baghdad, Iraq.

Mostafa

Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn Malaysia, Johor, ۸۶۴۰۰, Malaysia.

Elngar

Faculty of Computer & Artificial Intelligence, Beni-Suef University, Beni-Suef City, ۶۲۵۱۱, Egypt; College of Computer Information Technology, American University in the Emirates, United Arab Emirates

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton, “ImageNet Classification ...
  • Awan, M.J., Masood, O.A., Mohammed, M.A., Yasin, A., Zain, A.M., ...
  • Cocodataset.org, “COCO - Common Objects in Context,” [Online], Available at: http://cocodataset.org/download ...
  • Xiao, F. Shan, Z. Li, B. T. Le, X. Liu ...
  • Huang, Z. Liu, L. v. d. Maaten and K. Q. ...
  • Guo, Zhiling et al, “Village Building Identification Based on Ensemble ...
  • Huh, M., Agrawal, P, and Efros, A. A, “What makes ...
  • He, X. Zhang, S. Ren, and J. Sun, “Deep residual ...
  • Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton, “ImageNet Classification ...
  • Lal, S., Rehman, S.U., Shah, J.H., Meraj, T., Rauf, H.T., ...
  • Lin, T.Y, Doll´ar, P, Girshick, R, He, K, Hariharan, B, ...
  • Lin, T.Y, Goyal, P, Girshick, R, He, K, Doll´ar, P, ...
  • Ma J, Chen L, Gao Z, “Hardware Implementation and Optimization ...
  • Mujahid A, Awan MJ, Yasin A, Mohammed MA, Damaševičius R, ...
  • Nisa, M.U., Mahmood, D., Ahmed, G., Khan, S., Mohammed, M.A. ...
  • OlafenwaMoses/ImageAI", GitHub, [Online], Available at: "ImageAI", Imageai.org, [Online], Available at http://imageai.org/, [Accessed ...
  • Redmon, J, Divvala, S, Girshick, R, Farhadi, A., “You only ...
  • Redmon, J, Farhadi, A, “Yolo ۹۰۰۰: Better, faster, stronger,” arXiv ...
  • Ren, S, He, K, Girshick, R, Sun, J, “Faster r-cnn: ...
  • Ren, Shaoqing, Kaiming He, Ross Girshick, and Jian Sun, “Faster ...
  • Russakovsky, O, Deng, J, Su, H., Krause, J., Satheesh, S, ...
  • Sermanet, Pierre, and Yann LeCun, “Traffic Sign Recognition with Multi ...
  • Sheu, J.S. and Chen-Yin, H., ۲۰۱۹, “Combining Cloud Computing and ...
  • Szegedy, C, Liu, W, Jia, Y, Sermanet, P, Reed, S, ...
  • T.-Y. Lin, P. Doll´ar, R. Girshick, K. He, B. Hariharan, ...
  • Xie, S, Girshick, R, Doll´ar, P, Tu, Z, He, K, ...
  • LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. ...
  • Yosinski, J, Clune, J, Bengio, Y, and Lipson, H, “How ...
  • Li, C. Peng, G. Yu, X. Zhang, Y. Deng, and ...
  • نمایش کامل مراجع