Discrimination among Winding Mechanical Defects in Transformer Using Noise Detection and Data Mining Boosting Method
سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 181
فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IECO-4-3_002
تاریخ نمایه سازی: 20 تیر 1401
چکیده مقاله:
IIn this paper, an efficient method to detect and discriminate mechanical defects of transformer winding based on extracting the winding frequency responses using outlier data detection and ensemble algorithms ,which in total constitutes an efficient hybrid method has been proposed. First, the frequency response of the high voltage winding of a real model of transformer (۱.۶ MVA) was extracted in different condition and arranged as primary data. Then, due to the high standard deviation of the characteristics and the weight of the outlier samples above the threshold of ۱.۱, the Local Outlier Factor (LOF) method was used to clean the samples. Finally, data mining algorithms have been used to detect and distinguish mechanical defects. Based on the results, the decision tree bagging ensemble method reported the best accuracy compared to other techniques and improved the accuracy of the decision tree with total accuracy of ۹۲.۶۸% by LOF. These results also showed that all methods improved accuracy by LOF. Therefore, it can be claimed that the proposed method has the ability to discriminate the mechanical defects of the transformer winding with appropriate accuracy.
کلیدواژه ها:
نویسندگان
Zahra Moravej
Electrical & Computer Engineering Faculty, Semnan University
Seyed Mahmood Mortazavi
Department of Electrical and Computer Engineering, semnan University .iran
Mojtaba Mohseni
Department of Electrical and Computer Engineering, amirkabir university.tehran.iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :