A New and Very Fast Fault Detection and Classification Method based on Traveling Wave in Transmission Lines
سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 250
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IECO-4-4_001
تاریخ نمایه سازی: 20 تیر 1401
چکیده مقاله:
This study introduces a single-ended method to detect the protection zone and distinguish faults occurring in the back of the relay in the transmission lines and then provides an algorithm to classify different types of faults, including a lightning strike on phases and shield wire. Accordingly, using the Wavelet Transform (WT), the first class of Traveling Wave (TW) current is separated at the beginning of all bus-connected lines. The faulty line and the protection zone are selected based on the relations governing the radiation and reflection. Then, given the features and relations extracted from these waves, the faults caused by lightning strikes on the transmission line and conventional faults are classified, with considering the mutual induction between TWs on the transmission line phases. This action is essential and helpful for transmission line with single phase tripping and auto-reclosing mechanisms. Over ۱۱۰۰ faults with varying conditions and locations are implemented on a ۱۰۰-km line with a voltage level of ۲۳۰ kV in the PSCAD software to evaluate and test the proposed method. The results of this heavy simulation confirmed the validity, speed, and accuracy of the proposed method.
کلیدواژه ها:
نویسندگان
Iman Mousaviyan
Department of Electrical Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
Seyyed Ghodratollah Seifossadat
Department of Electrical Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
Mohsen Saniei
Department of Electrical Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :