Cryptocurrency Autonomous Trading Using Deep Reinforcement Learning with Sequential Sampling
سال انتشار: 1401
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 322
فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
IPQCONF07_002
تاریخ نمایه سازی: 18 تیر 1401
چکیده مقاله:
Supervised learning systems relied on a thorough knowledge of how to trade the assets. However, due to the nature of financial trading, particularly in the cryptocurrency market, where there is no clearly defined aim, a reinforcement learning strategy would be a good fit for the problem. We will aim to develop an intelligent agent without using a supervised target by using reinforcement learning. Instead, we will fine-tune the agent's strategy over time by trading the cryptocurrency historically and attempting to optimize the trading profit. To divide the dataset into trading points, we employ sequential sampling. The trader also has complete control over which years are loaded, which models are used, and how the sampling split point is changed. According to our findings, a deep Q learning model with sequential sampling (DQNSS) outperforms a simple deep Q learning model (DQN) in terms of overall trading profit and execution time in the cryptocurrency
کلیدواژه ها:
نویسندگان
Mehrad Mashoof
Department of Industrial Engineering, Science and Research branch, Islamic Azad University, Tehran, Iran
Abbas Saghaei
Department of Industrial Engineering, Science and Research branch, Islamic Azad University, Tehran, Iran